Skip to main content
Log in

Arthrobacter enclensis sp. nov., isolated from sediment sample

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 10 October 2014

Abstract

A novel bacterial strain designated as NIO-1008T was isolated from marine sediments sample in Chorao Island India. Cells of the strains were gram positive and non-motile, displayed a rod–coccus life cycle and formed cream to light grey colonies on nutrient agar. Strain NIO-1008T had the chemotaxonomic markers that were consistent for classification in the genus Arthrobacter, i.e. MK-9(H2) (50.3 %), as the major menaquinone, and the minor amount of MK-7 (H2-27.5 %), MK-8 (H4-11.6 %) and MK-8 (H2-10.4 %). anteiso-C15:0, iso-C15:0, iso-C16:0 and C15:0 were the predominant fatty acids. Galactose, glucose and rhamnose are the cell-wall sugars, and DNA G+C content was 61.3 mol%. Phylogenetic analysis, based on 16S rRNA gene sequencing, showed that the strains were most similar to Arthrobacter equi IMMIB L-1606T, Arthrobacter chlorophenolicus DSM 12829T, Arthrobacter defluvii KCTC 19209T and Arthrobacter niigatensis CCTCC AB 206012T with 98.5, 98.4, 98.0 and 97.8 %, respectively, and formed a separate lineage. Combined phenotypic data and DNA–DNA hybridization data supported the conclusion that strains NIO-1008T represent a novel species within the genus Arthrobacter, for which the name Arthrobacter enclensis sp. nov., is proposed. The type strain is NIO-1008T = (NCIM 5488T = DSM 25279T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Conn HJ, Dimmick I (1947) Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J Bacteriol 54:291–303

    PubMed  CAS  PubMed Central  Google Scholar 

  • Das S, Lyla VS, Khan A (2008) Distribution and generic composition of culturable marine actinomycetes from the sediments of Indian continental slope of Bay of Bengal. Chin J Oceanol Limnol 26:166–177

    Article  Google Scholar 

  • De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  • Ding L, Hirose T, Yokota A (2009) Four novel Arthrobacter species isolated from filtration substrate. Int J Syst Evol Microbiol 59(4):856–862

    Article  PubMed  CAS  Google Scholar 

  • Duarte GF, Rosado AS, Seldin L, De Araujo W, Van Elsas JD (2001) Analysis of bacterial community structure in sulfurous-oil containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes. Appl Environ Microbiol 67:1052–1062

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–789

    Article  Google Scholar 

  • Felsenstein J (2002) PHYLIP (phylogeny inference package), version 3.6a. Distributed by the author. Department of Genome Science, University of Washington, Seattle, USA

  • Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673

    Article  PubMed  CAS  Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155:279–284

    Article  PubMed  CAS  Google Scholar 

  • Fukatsu H, Goda M, Hashimoto Y, Higashibata H, Kobayashi M (2005) Optimum culture conditions for the production of N-substituted formamide deformylase by Arthrobacter pascens F164. Biosci Biotechnol Biochem 69:228–230

    Article  PubMed  CAS  Google Scholar 

  • Gillis M, De Ley J, De Cleene M (1970) The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 12:143–153

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez JM, Saiz-Jimenez C (2002) A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4(11):770–773

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez JM, Saiz-Jimenez C (2005) A simple fluorimetric method for the estimation of DNA–DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 9(1):75–79

    Article  PubMed  CAS  Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hamana K, Sakane T, Yokota A (1994) Polyamine analysis of the genera Aquaspirillum, Magnetospirillum, Oceanospirillum and Spirillum. J Gen Appl Microbiol 40:75–82

    Article  CAS  Google Scholar 

  • Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Microbiol 29:319–322

    Article  CAS  Google Scholar 

  • Heyrman J, Verbeeren J, Schumann P, Swings J, Paul DV (2005) Six novel Arthrobacter species isolated from deteriorated mural paintings. Int J Syst Evol Microbiol 55:1457–1464

    Article  PubMed  CAS  Google Scholar 

  • Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  PubMed  CAS  Google Scholar 

  • Jensen PR, Gontang E, Mafnas C, Mincer TJ, Fenical W (2005) Culturable marine actinomycetes diversity from tropical Pacific Ocean sediments. Environ Microbiol 7:1039–1048

    Article  PubMed  Google Scholar 

  • Jussila MM, Jurgens G, Lindstrom K, Suominen L (2006) Genetic diversity of culturable bacteria in oil-contaminated rhizosphere of Galega orientalis. Environ Pollut 139:244–257

    Article  PubMed  CAS  Google Scholar 

  • Keddie RM, Collins MD, Jones D (1986) Genus Arthrobacter 1288–1301. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore

    Google Scholar 

  • Kim KK, Lee KC, Oh HM, Kim MJ, Eom MK, Lee JS (2008) Arthrobacter defluvii sp. nov., 4-chlorophenol-degrading bacteria isolated from sewage. Int J Syst Evol Microbiol 58(8):1916–1921

    Article  PubMed  CAS  Google Scholar 

  • Koch C, Schmann P, Stackebrandt E (1995) Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter. Int J Syst Bacteriol 45:837–839

    Article  PubMed  CAS  Google Scholar 

  • Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP-18) and a silver-loaded ion exchanger. J Liq Chromatogr 5:2359–2367

    Article  CAS  Google Scholar 

  • Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H, Huang X, Kobayashi K, Ezaki T (2004) Rothia aeria sp. nov., Rhodococcus baikonurensis sp. nov. and Arthrobacter russicus sp. nov., isolated from air in the Russian space laboratory Mir. Int J Syst Evol Microbiol 54:827–835

    Article  PubMed  CAS  Google Scholar 

  • Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R, Xu LH, Stackebrandt E, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China) and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428

    Article  PubMed  Google Scholar 

  • Loveland-Curtze J, Miteva VI, Brenchley JE (2011) Evaluation of a new fluorimetric DNA–DNA hybridization method. Can J Microbiol 57:250–255

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Schumann P, Sprőer C, Gounot AM (2004) Arthrobacter psychrophenolicus sp. nov., isolated from an alpine ice cave. Int J Syst Evol Microbiol 54:2067–2072

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Schumann P, Zhang DC, Redzic M, Zhou YG, Liu HC, Schinner F (2012) Arthrobacter cryoconiti sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 62:397–402

    Article  PubMed  CAS  Google Scholar 

  • Marks TS, Smith AR, Quirk AV (1984) Degradation of 4-chlorobenzoic acid by Arthrobacter sp. Appl Environ Microbiol 48:1020–1025

    PubMed  CAS  PubMed Central  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118

    Article  PubMed  CAS  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Ramesh S, Mathivanan N (2009) Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J Microbiol Biotechnol 25:2103–2111

    Article  CAS  Google Scholar 

  • Ramesh S, Jayaprakashvel M, Mathivanan N (2006) Microbial status in seawater and coastal sediments during pre- and post-tsunami periods in the Bay of Bengal, India. Mar Ecol 27:198–203

    Article  Google Scholar 

  • Rzechowska E (1976) Studies on the biodegradation of nonionic surfactants applied in the polyester fiber industry. I. Activated sludge bacteria degrading the surfactants. Acta Microbiol Pol 25:211–217

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:1–6

    Google Scholar 

  • Schleifer KH (1985) Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156

    Article  CAS  Google Scholar 

  • Sguros PL (1955) Microbial transformations of the tobacco alkaloids. I. Cultural and morphological characteristics of a nicotinophile. J Bacteriol 69:28–37

    PubMed  CAS  PubMed Central  Google Scholar 

  • Singer AC, Gilbert ES, Luepromchai E, Crowley DE (2000) Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Appl Microbiol Biotechnol 54:838–843

    Article  PubMed  CAS  Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (editors) (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Stackebrandt E, Fowler VJ, Fiedler F, Seiler H (1983) Taxonomic studies on Arthrobacter nicotianae and related taxa. Description of Arthrobacter uratoxydans sp. nov. and Arthrobacter sulfureus sp. nov. and reclassification of Brevibacterium protophormiae as Arthrobacter protophormiae comb. nov. Syst Appl Microbiol 4:470–486

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi M, Yokota A (1991) Reclassification of strains of FlavobacteriumCytophaga group in IFO culture collection. Inst Ferment Osaka Res Commun 15:83–96

    Google Scholar 

  • Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Westerberg K, Elvang AM, Stackebrandt E, Jansson JK (2000) Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int J Syst Evol Microbiol 50:2083–2092

    Article  PubMed  CAS  Google Scholar 

  • Yassin AF, Spröer C, Siering C, Hupfer H, Schumann P (2011) Arthrobacter equi sp. nov., isolated from veterinary clinical material. Int J Syst Evol Microbiol 61(9):2089–2094

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Ma Y, Yu H (2012) Arthrobacter cupressi sp. nov., an actinomycete isolated from the rhizosphere soil of Cupressus sempervirens. Int J Syst Evol Microbiol 62:2731–2736

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Author SGD thanks to the Council for Scientific and Industrial Research (CSIR), New Delhi for financial supported from the Grants under 12th 5-year plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed G. Dastager.

Additional information

Communicated by Erko Stackebrandt.

Syed G. Dastager and Liu Qin have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastager, S.G., Qin, L., Tang, SK. et al. Arthrobacter enclensis sp. nov., isolated from sediment sample. Arch Microbiol 196, 775–782 (2014). https://doi.org/10.1007/s00203-014-1016-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-014-1016-9

Keywords

Navigation