Skip to main content
Log in

Characterization of a mercury-reducing Bacillus cereus strain isolated from the Pulicat Lake sediments, south east coast of India

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Pulicat Lake sediments are often severely polluted with the toxic heavy metal mercury. Several mercury-resistant strains of Bacillus species were isolated from the sediments and all the isolates exhibited broad spectrum resistance (resistance to both organic and inorganic mercuric compounds). Plasmid curing assay showed that all the isolated Bacillus strains carry chromosomally borne mercury resistance. Polymerase chain reaction and southern hybridization analyses using merA and merB3 gene primers/probes showed that five of the isolated Bacillus strains carry sequences similar to known merA and merB3 genes. Results of multiple sequence alignment revealed 99% similarity with merA and merB3 of TnMERI1 (class II transposons). Other mercury resistant Bacillus species lacking homology to these genes were not able to volatilize mercuric chloride, indicating the presence of other modes of resistance to mercuric compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Avery SV, Smith SL, Ghazi AM, Hoptroff MJ (1999) Stimulation of strontium accumulation in linolate-enriched Saccharomyces cerevisiae is a result of reduced Sr2+ efflux. Appl Environ Microbiol 65:1191–1197

    PubMed  CAS  Google Scholar 

  • Barkay T, Olson BH (1986) Phenotypic and genotypic adaptation of aerobic heterotrophic sediment bacterial communities to mercury stress. Appl Environ Microbiol 52:403–406

    PubMed  CAS  Google Scholar 

  • Barkay T, Gillman M, Liebert C (1990) Genes encoding mercuric reductases from selected Gram negative aquatic bacteria have a low degree of homology with merA of transposon Tn501. Appl Environ Microbiol 56:1695–1701

    PubMed  CAS  Google Scholar 

  • Baya AM, Brayton PR, Brown VL, Grimes DJ, Russek-Cohen E, Colwell RR (1986) Coincident plasmids and antimicrobial resistance in marine bacteria isolated from polluted and unpolluted Atlantic Ocean samples. Appl Environ Microbiol 51:1285–1292

    PubMed  CAS  Google Scholar 

  • Begley TP, Walts AE, Walsh CT (1986) Bacterial organomercuriclyase: over production, isolation and characterization. Biochemistry 25:7186–7193

    Article  PubMed  CAS  Google Scholar 

  • Bhattacherjee JW, Pathak SP, Gaur A (1988) Antibiotic resistance and metal tolerance of coli form bacteria isolated from Gomti river water at Lucknow city. J Gen Appl Microbiol 34:391–399

    CAS  Google Scholar 

  • Bogdanova ES, Bass IA, Minakhin LS, Petrova MA, Mindlin SZ, Volodin A, Kalyaeva ES, Tiedje GM, Hobman JL, Brown NL, Nikiforov V (1998) Horizontal spread of mer operons among Gram positive bacteria in natural environments. Microbiology 144:609–620

    PubMed  CAS  Google Scholar 

  • Brown NL (1985) Bacterial resistance mercury—reduction ad absurdum? Trends Biochemical Soc 10:400–403

    Article  CAS  Google Scholar 

  • Cruickshank R (1968) Medical microbiology: a guide to the laboratory diagnosis and control of infections, 12th edn. E. and S. Livingstone Ltd., London

    Google Scholar 

  • Descheemaker P, Swings J (1995) The application of fatty acid methyl ester analysis (FAME) for the identification of heterotrophic bacteria present in decaying Lede-stone of the St. Bavo Cathedral in Ghent. Sci Total Environ 167:241–247

    Article  Google Scholar 

  • Dhakephalkar PK, Chopade BA (1994) High levels of multiple metal resistances and its correlation to antibiotic resistance in environmental isolates of Acinetobacter. Biometals 7:67–74

    Article  PubMed  CAS  Google Scholar 

  • Erbe JL, Taylor KB, Hall LM (1995) Metalloregulation of the cyanobacterial smt locus: identification of the smtB binding sites and direct interaction with metals. Nucleic Acids Res 23:2472–2478

    PubMed  CAS  Google Scholar 

  • Glassman DL, McNicol LA (1981) Plasmid frequency in natural population of estuarine microorganisms. Plasmid 5:231

    Google Scholar 

  • Gupta A, Phung LT, Chakravarty L, Silver S (1999) Mercury resistance in Bacillus cereus RC607: transcriptional organization and two new genes. J Bacteriol 181:7080–7086

    PubMed  CAS  Google Scholar 

  • Hada HS, Sizemore RK (1981) Incidence of plasmid in marine Vibrio spp isolated from an oil field in the northwestern Gulf of Mexico. Appl Enviorn Microbiol 41:199–202

    CAS  Google Scholar 

  • Hassen A, Saidi N, Cherif M, Baudabous A (1990) Resistance of environmental bacteria to heavy metals. Bioresour Technol 64:7–11

    Article  Google Scholar 

  • Hobman JL, Brown NL (1997) Bacterial mercury resistance genes. In: Sigel H, Sigel A (eds) Metal ions in biological system, vol 34. Dekker, New York, pp 527–568

  • Huang CC, Narita M, Yamagata T, Itoh Y, Endo G (1999) Structure analysis of a class II transposon encoding the mercury resistance of the Gram-positive bacterium Bacillus megaterium MB1 a strain isolated from Minamata Bay Japan. Gene 234:361–369

    Article  PubMed  CAS  Google Scholar 

  • Jonas RB, Gilmour CC, Stover DL, Weir MM, Tuttle JH (1984) Comparison of methods to measure acute metal and organ metal toxicity to natural aquatic microbial communities. Appl Environ Microbiol 47:1005–1011

    PubMed  CAS  Google Scholar 

  • Liebert AC, Wireman J, Smith T, Summers OA (1997) Phylogeny of mercury resistance (mer) operons of Gram negative bacteria isolated from the fecal flora of primates. Appl Enviorn Microbiol 63:1066–1076

    CAS  Google Scholar 

  • Luli GW, Talnagi JW, Strohl WR, Pfister RM (1983) Hexavalent chromium resistant bacteria isolated from river sediments. Appl Environ Microbiol 46:846–854

    PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Misra TK (1992) Bacterial resistance to inorganic mercuric salts and organomercurials. Plasmid 27:4–16

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Nakahara H (1988) Simplified X-ray film method for the detection of mercurial volatilization of mercuric chloride by Escherichia coli. Appl Environ Microbiol 54:2871–2873

    PubMed  CAS  Google Scholar 

  • Nakamura K, Silver S (1994) Molecular analysis of mercury resistant Bacillus isolated from sediment of Minamata Bay, Japan. Appl Enviorn Microbiol 60:4596–4599

    CAS  Google Scholar 

  • Narita M, Chiba K, Nishizawa H, Ishii H, Huang CC, Kawabata Z, Silver S, Endo G (2003) Diversity of mercury resistance determinants among Bacillus strains isolated from sediment of Minamata Bay. FEMS Microbiol Lett 223:73–82

    Article  PubMed  CAS  Google Scholar 

  • Narita M, Matsui K, Huang CC, Kawabata Z, Endo G (2004) Dissemination of TnMERI1-like transposons among Bacillus isolated from the world wide environmental samples. FEMS Microbiol Ecol 48:47–55

    Article  CAS  Google Scholar 

  • Osborn AM, Bruce KD, Strike P, Ritchie DA (1995) Sequence conservation between regulatory mercury resistance genes in bacteria from mercury polluted and pristine environment. Syst Appl Microbiol 18:1–6

    CAS  Google Scholar 

  • Pan-Hou KSH, Kiyono M, Omura H, Omura T, Endo G (2002) Polyphosphate produced in recombinant Escherichia coli confers mercury resistance. FEMS Microbiol Lett 10325:159–164

    Google Scholar 

  • Penninckx MJ, Jaspers CJ (1982) On the role of glutathione in microorganisms. Bull Inst Pasteur 80:291–301

    CAS  Google Scholar 

  • Periakali P, Padma S (1998) Mercury in Pulicat Lake sediments, east coast of India. J Ind Assoc Sedimentol 17:239–244

    Google Scholar 

  • Ramteke DW (1997) Plasmid mediated co-transfer of antibiotic resistance and heavy metal tolerance in coli forms. J Ind Microbiol 37:177–181

    Google Scholar 

  • Reniero D, Mozzon E, Galli E, Barbieri P (1998) Two aberrant mercury resistant transposons in the Pseudomonas stuzeri plasmid pPB. Gene 208:37–42

    Article  PubMed  CAS  Google Scholar 

  • Renzoni A, Zino F, Franchi E (1998) Mercury levels along the food chain and risk for exposed population. Environ Res 77:68–72

    Article  PubMed  CAS  Google Scholar 

  • Reyes SN, Frischer EM, Sobecky AP (1999) Characterization of mercury resistance mechanism in marine sediment microbial communities. FEMS Microbiol Ecol 30:273–284

    PubMed  CAS  Google Scholar 

  • Robinson NJ, Whitehall SK, Cavet JS (2001) Microbial metallothioneins. Adv Microb Physiol 44:183–213

    Article  PubMed  CAS  Google Scholar 

  • Rother JA, Millbank JW, Thornton I (1982) Effects of heavy-metal additions on ammonification and nitrification in soils contaminated with cadmium lead and zinc. Plant Soil 69:239–258

    CAS  Google Scholar 

  • Sadhukhan CP, Ghosh S, Chaudhuri J, Ghosh DK, Mandal A (1997) Mercury and organomercurial resistance in bacteria isolated from freshwater fish of wetland fisheries around Calcutta. Environ Poll 97:71–78

    Article  CAS  Google Scholar 

  • Silver S, Ji G (1994) Newer systems for bacterial resistances to toxic heavy metals. Environ Health Perspect 102:107–113

    PubMed  CAS  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprise. Annu Rev Microbiol 50:753–789

    Article  PubMed  CAS  Google Scholar 

  • Silver S, Walderhaug M (1992) Gene regulation of plasmid- and chromosomal-determined inorganic ion transport in bacteria. Microbiol Rev 56:195–228

    PubMed  CAS  Google Scholar 

  • Summers OA (1986) Organization expression and evolution of genes for mercury resistance. Annu Rev Microbiol 40:607–634

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Kuroda M, Sakaguchi K (1977) Isolation and characterization of four plasmid from Bacillus subtilis. J Bacteriol 129:1487–1494

    PubMed  CAS  Google Scholar 

  • Timoney JF, Port J, Giles J, Spanier N (1978) Heavy-metal and antibiotic resistance in bacterial flora of sediments of New York Bright. Appl Enviorn Microbiol 36:465–472

    CAS  Google Scholar 

  • Verma T, Srinath T, Gadpayle RU, Ramteke PW, Hans RK, Garg SK (2001) Chromate tolerant bacteria isolated from tannery effluent. Bioresour Technol 78:31–35

    Article  PubMed  CAS  Google Scholar 

  • Viti C, Pace A, Giovannetti L (2003) Characterization of Cr (VI)—resistant bacteria isolated from the chromium-contaminated soil by tannery activity. Curr Microbiol 46:1–5

    Article  PubMed  CAS  Google Scholar 

  • Wagner-Dobler I, von Canstein H, Li Y, Timmis KN, Deckwer WD (2000) Removal of mercury from chemical wastewater by microorganisms in technical scale. Environ Sci Technol 34:4628–4634

    Article  Google Scholar 

  • Wang Y, Moore M, Levinson HS, Silver S, Walsh C, Mahler I (1989) Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillus species with broad spectrum mercury resistance. J Bacteriol 171:83–92

    PubMed  CAS  Google Scholar 

  • Zhou J, Goldsborough PB (1994) Functional homologs of fungal metallothionein genes in Arabidopsis. Plant Cell 6:875–884

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Prof. C.C. Huang, Department of Life Sciences, National Chung Hsing University, Taiwan for providing the primers merA and merB3. S.K. and R.K. thank Prof. P. Periakali, Head, Department of Applied Geology, University of Madras for his constant encouragement during the study. SK is grateful to Aashiq Hussain Kachroo for help with the molecular biological analysis and the University of Madras for fellowship under the “UGC- UWPFE” programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seralathan Kamala Kannan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kannan, S.K., Mahadevan, S. & Krishnamoorthy, R. Characterization of a mercury-reducing Bacillus cereus strain isolated from the Pulicat Lake sediments, south east coast of India. Arch Microbiol 185, 202–211 (2006). https://doi.org/10.1007/s00203-006-0088-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0088-6

Keywords

Navigation