Skip to main content
Log in

Notch adaptive filter solution under unbalanced and/or distorted PCC voltage for 3-phase 3-wire shunt active power filter

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, the 3-phase 3-wire Shunt Active Power Filter (ShAPF) dealing with non-ideal Point of Common Coupling (PCC) voltages will be presented. The instantaneous power theory is applied to design the ShAPF controller which shows reliable performances. The Adaptive Notch Filter (ANF) is proposed to process those unbalanced and/or distorted PCC voltage. The simulation results of Matlab/SimpowerSytem tool have proved that the ANF successfully facilitates the ShAPF in terms of compensating unbalanced/distorted current of loads under even without an ideal voltage circumstance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. El-Habrouk M, Darwish MK, Mehta P (2000) Active power filters: a review. IEEE Proc Elect Power Applicat. 147(5):403. doi:10.1049/ip-epa:20000522

  2. Singh ACB, Al-Haddad K (1999) A review of active filters for power quality improvement. IEEE Trans Ind Electron 46(5):960. doi:10.1109/41.793345

    Article  Google Scholar 

  3. Akagi H (1996) New trends in active filter for power conditioning. IEEE Trans Ind Appl 32(6):1312. doi:10.1109/28.556633

    Article  Google Scholar 

  4. Gyugyi L, Strycula E (1976) Active ac power filters. In: Proceedings IEEE Ind. Appl. Ann. Meeting 19-C(NA), pp 529

  5. Akagi ANH, Kanagawa Y (1983) Generalized theory of the instantaneous reactive power in three-phase circuits. In: International Conference on Power Electron

  6. Ucar MKM, Ozdemir E (2004) An analysis of three-phase four-wire active power filter for harmonic elimination reactive power compensation and load balancing under nonideal mains voltage. In: IEEE 35th Annual Power Electronics Specialists Conference 4(NA), pp 3089. doi:10.1109/PESC.2004.1355329

  7. Biricik S OOCRSKMIO (2013) Performance improvement of active power filter under distorted and unbalanced grid voltage conditions. Elektronika ir Elektrotechnika 19(1):35. doi:10.5755/j01.eee.19.1.3247

    Article  Google Scholar 

  8. Kale M OE (2005) Harmonic and reactive power compensation with shunt active power filter under non-ideal mains voltage. Elect Power Syst Res 74(3):363. doi:10.1016/j.epsr.2004.10.014

    Article  Google Scholar 

  9. Montero M.I.M CEGF (2007) Comparison of control strategies for shunt active power filters in three-phase four-wire systems. IEEE Trans Power Electro 22(1):229. doi:10.1109/TPEL.2006.886616

    Article  Google Scholar 

  10. Mariun NMH, Alam A (2004) Review of control strategies for power quality conditioners. National Power and Energy Conf. Proc., PECon, pp 109. doi:10.1109/PECON.2004.1461626

  11. Komatsu TKY (1999) A control method for the active power filter in unsymmetrical voltage systems. Int J Electron 86(10):1249. doi:10.1109/PEDS.1997.627504

    Article  MathSciNet  Google Scholar 

  12. Huang HLJSJ, Wua Jing-Chang (1999) A study of three-phase active power filters under non-ideal mains voltages. Electr Power Syst Res 49(2):129. doi:10.1016/S0378-7796(98)00118-7

    Article  Google Scholar 

  13. Chen YHCC (2000) A novel approach to the design of a shunt active filter for an unbalanced three-phase four-wiresystem under nonsinusoidal conditions. Electr Power Syst Res 15(4):1258. doi:10.1109/61.891512

    Google Scholar 

  14. Lin YLBR (2004) Three-phase power quality compensator under the unbalanced sources and nonlinear loads. IEEE Trans Ind Electron 51(5):1009. doi:10.1109/TIE.2004.834960

    Article  Google Scholar 

  15. Chang CYGW (2005) Optimisation-based strategy for shunt active power filter control under non-ideal supply voltages. IEE Proc Electr Power Appl 152(2):182. doi:10.1049/ip-epa:20045017

    Article  Google Scholar 

  16. Kim BBJJCH, Blaabjerg F (2002) Instantaneous power compensation in three-phase systems by using p-q-r theory. IEEE Proc Electr Power Appl 17(5):701. doi:10.1109/TPEL.2002.802185

    Article  Google Scholar 

  17. Murat Kale EO (2005) Harmonic and reactive power compensation with shunt active power filter under non-ideal mains voltage. Elect Power Syst Res 74(3):363. doi:10.1016/j.epsr.2004.10.014

    Article  Google Scholar 

  18. MehmetUcar EO (2008) Control of a 3-phase 4-leg active power filter under non-ideal mains voltage condition. Elect Power Syst Res 78(1):58. doi:10.1016/j.epsr.2006.12.008

    Article  Google Scholar 

  19. Rafiei SMRT, Ghazi R (2002) Ieee-519-based real-time and optimal control of active filters under nonsinusoidal line voltages using neural networks. IEEE Trans Power Del 17(3):815. doi:10.1109/TPWRD.2002.1022809

    Article  Google Scholar 

  20. Nguyen NK, Wira A, Flieller D (2009) Neural networks for phase and symmetrical components estimation in power systems. In: 35th Annual Conference of IEEE Ind. Electron., IECON 09, pp 3252. doi:10.1109/IECON.2009.5415210

  21. Karimi S, Poure P (2008) High performances reference current generation for shunt active filter under distorted and unbalanced conditions. IEEE Power Electronics Specialists Conference on PESC, pp 195. doi:10.1109/PESC.2008.4591924

  22. Abdusalam M, Poure P (2008) Hardware implementation of a three-phase active filter system with harmonic isolation based on self-tuning-filter. In: Power Electronics Specialists Conference on IEEE-PESC 2008, pp 2875. doi:10.1109/PESC.2008.4592385

  23. Abdusalam.M KS, Poure P (2009) New digital reference current generation for shunt active power filter under distorted voltage conditions. Electr Power Syst Res 79(5):759. doi:10.1016/j.epsr.2008.10.009

    Article  Google Scholar 

  24. Adam GL, Stan AG (2012) An adaptive hysteresis band current control for three phase shunt active power filter using fuzzy logic. In: 2012 Interntional Conference and Exposition on Electrical and Power Engineering, Vol 79(5), pp 324. doi:10.1109/ICEPE.2012.6463910

  25. Gupta N, Dubey SP (2010) Pil based control algorithm for three-phase four-wire active filter for reactive and harmonic compensation under distorted supply. In: 2010 Joint International Conference on Power Electronics, Drives and Energy Systems, (PEDES) and 2010 Power India, pp 1

  26. Samadaei E, Lesan S (2011) A new schematic for hybrid active power filter controller. In: 2011 IEEE Applied Power Electronics Colloquium (IAPEC), pp 143. doi:10.1109/IAPEC.2011.5779850

  27. Biricik S, Rediff S, Kmail MO, Ozerdem OC (2011) Performance improvement of active power filters based on p-q and d-q control methods under non-ideal supply voltage conditions. In: Proceedings of Seventh International Conference on Electrical and Electronics Engineering (ELECO 2011). http://www.eejournal.ktu.lt/index.php/elt/article/viewFile/3247/2258

  28. Benaissa A, Rabhi B, Benkhoris MF, Moussi A, Le Claire JC (2012) Fuzzy logic controller for five-level shunt active power filter under distorted voltage conditions. 38th Annual Conf. on IEEE Industrial Electronics Society IECON 2012 NA(NA), 4973. doi:10.1109/IECON.2012.6388986

  29. Ghadbane I, Ghamri A, Benchouia MT, Golea A (2012) Three-phase shunt active power filter for power improvement quality using sliding mode controller. Proc. Second Int. Conf. on Communications, Computing and Control Applications (CCCA), p 1. doi:10.1109/CCCA.2012.6417876

  30. Ghamri.A G, Benchouia MT (2012) Sliding-mode control based three-phase shunt active power filter:simulation and experimentation. Simul Exp Electr Power Compon Syst 40(4):383. doi:10.1080/15325008.2011.639127

    Article  Google Scholar 

  31. Biricik S, Ozerdem OC, Redif S, Kmail MOI (2012) Novel hybrid active power filter structure to compensate harmonic currents and reactive power. In: Proceedings of 16th IEEE Mediterranean Electro-technical Conference on MELECON 2012. doi:10.1109/MELCON.2012.6196503

  32. Biricik.s OKB, Redif S (2014) Real-time control of shunt active power filter under distorted grid voltage and unbalanced load condition using self-tuning filter. IET Power Electron 7(7):1895. doi:10.1049/iet-pel.2013.0924

    Article  Google Scholar 

  33. Mohsen Mojiri AB, Karimi-Ghartemani Masoud (2007) Time-domain signal analysis using adaptive notch filter. IEEE Trans Signal Process 55(1):85. doi:10.1109/TSP.2006.885686

    Article  MathSciNet  Google Scholar 

  34. Yazdani D BAJG, Mojiri M (2009) A fast and accurate synchronization technique for extraction of symmetrical components. Time-Domain Signal Analysis Using Adaptive Notch Filter 24(3):674. doi:10.1109/TPEL.2008.2010321

  35. M.Mojiri A (2004) An adaptive notch filter for frequency estimation of a periodic signal. IEEE Trans Automat Control 49(2):314. doi:10.1109/TAC.2003.821414

    Article  MathSciNet  Google Scholar 

  36. Mojiri AM, M.Mojiri A (2007) Estimation of \(n\) frequencies using adaptive notch filter. IEEE Trans Circuit and Systems II Express Briefs 54(4):338. doi:10.1109/TCSII.2006.889724

    Article  Google Scholar 

  37. M.Mojiri A, Karimi-Ghartemani M (2007) Estimation of power system frequency using adaptive notch filter. IEEE Trans Circuit Syst II Express Briefs 56(6):2470. doi:10.1109/TIM.2007.908631

    Google Scholar 

  38. Yazdani GMD, Bakhshai A (2008) A nonlinear adaptive synchronization technique for grid-connected distributed energy sources. IEEE Trans Power Elect 23(4):2181. doi:10.1109/TPEL.2008.926045

    Article  Google Scholar 

  39. Yazdani D, Bakhshai A, Joos G, Mojiri M (2008) Nonlinear adaptive synchronization technique for single-phase grid-connected converters. In: IEEE Power Electronics Specialists Conference, PESC 2008, p 4076. doi:10.1109/PESC.2008.4592591

  40. Yazdani D, Bakhshai A, Joos G, Mojiri M (2008) A single-phase adaptive synchronization tool for grid-connected converters. In: IEEE IECON 34th, p 526. doi:10.1109/IECON.2008.4758008

  41. Dixon LJW, Garcia JJ (1995) Control system for three-phase active power filter which simultaneously compensates power factor and unbalanced loads. IEEE Trans Ind Electron 42(6):636. doi:10.1109/41.475504

  42. Karimi-Ghartemani MM (2004) A method for synchronization of power electronic converters in polluted and variable-frequency environments. IEEE Trans Power Syst 19(3):1263. doi:10.1109/TPWRS.2004.831280

    Article  Google Scholar 

  43. Pereira. R.R DSLTGPJ, Silva. C.H Da (2011) New strategies for application of adaptive filters in active power filters. IEEE Trans Indus Appl 47(3):1136. doi:10.1109/TPEL.2006.886616

    Article  Google Scholar 

  44. Chicharo. J.F WH (1994) Power system harmonic signal estimation and retrieval for active power filter applications. IEEE Trans Power Electro 9(6):580. doi:10.1109/63.334772

    Article  Google Scholar 

  45. Tuyen ND, Fujita G, Muhtazaruddin B, Nabil M (2014) 3-phase 4-wire shunt apf under non-ideal pcc voltage using adaptive notch filter. In: PES General Meeting Conference and Exposition, p 1. doi:10.1109/PESGM.2014.6938790

Download references

Acknowledgments

This work was financially supported by the Environment Research and Technology Development Fund (F-1201) of the Ministry of the Environment, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Duc Tuyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuyen, N.D., Fujita, G. & Muhtazaruddin, M.N.B. Notch adaptive filter solution under unbalanced and/or distorted PCC voltage for 3-phase 3-wire shunt active power filter. Electr Eng 98, 321–332 (2016). https://doi.org/10.1007/s00202-016-0362-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-016-0362-9

Keywords

Navigation