Skip to main content
Log in

Static VAR compensator using recurrent neural network

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, an internal model control recurrent neural network method is used to control the switching of thyristor-controlled reactor in a static VAR compensator (SVC) system for regulating the voltage. The novel controller scheme contains several feedback loops instead of only a feed-forward loop as in the conventional recurrent neural network (RNN). In the proposed controller model, the RNN identifier creates a sample of the connected system and its output generates a part of inputs for the RNN controller which then sends the control signal to the SVC system. Three types of non-linear conditions are chosen to test the operational capability of the new control system to perform the voltage regulation satisfying the IEEE Std 519-1992. The test cases contain a three-phase fault power system, opening of one of the transmission lines in a double line transmission system and sudden changes in the load demand. Results show that the proposed control model is capable of regulating the voltage of the system in a desired range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Grainger JJ, Stevenson WD (1994) Power system analysis, vol 621. McGraw-Hill, New York

    Google Scholar 

  2. Saadat H (1999) Power system analysis. McGraw-hill companies, New York

    Google Scholar 

  3. Kundur P, Balu NJ, Lauby MG (1994) Power system stability and control. McGraw-Hill, New York

    Google Scholar 

  4. Teleke S, Abdulahovic T, Thiringer T, Svensson J (2008) Dynamic performance comparison of synchronous condenser and SVC. Power Deliv IEEE Trans 23(3):1606–1612. doi:10.1109/TPWRD.2007.916109

    Article  Google Scholar 

  5. Hingorani NG (1988) Power electronics in electric utilities: role of power electronics in future power systems. Proc IEEE 76(4):481–482. doi:10.1109/5.4432

    Article  Google Scholar 

  6. Gyugyi L (1994) Dynamic compensation of AC transmission lines by solid-state synchronous voltage sources. Power Deliv IEEE Trans 9(2):904–911. doi:10.1109/61.296273

    Article  Google Scholar 

  7. Edris A, Adapa R, Baker M, Bohmann L, Clark K, Habashi K, Gyugyi L, Lemay J, Mehraban A, Meyers A (1997) Proposed terms and definitions for flexible AC transmission system (FACTS). IEEE Trans Power Deliv 12(4):1848–1853. doi:10.1109/61.634216

    Article  Google Scholar 

  8. Abido M (2009) Power system stability enhancement using FACTS controllers: A review. Arab J Sci Eng 34(2B):153–172. doi:10.1007/s00202-010-0147-5

    Google Scholar 

  9. Donsion M, Guemes J, Rodriguez J (2007) Quality power, benefits of utilizing facts devices in electrical power systems. In: Electromagnetic compatibility and electromagnetic ecology, 7th international Symposium on, 2007. IEEE, pp. 26–29. doi:10.1109/EMCECO.2007.4371637

  10. Lerch E, Povh D, Xu L (1991) Advanced SVC control for damping power system oscillations. Power Syst IEEE Trans 6(2):524–535. doi:10.1109/59.76694

    Article  Google Scholar 

  11. Hammad A, El-Sadek M (1989) Prevention of transient voltage instabilities due to induction motor loads by static VAR compensators. Power Syst IEEE Trans 4(3):1182–1190. doi:10.1109/59.32616

    Article  Google Scholar 

  12. Larsen E, Rostamkolai N, Fisher D, Poitras A (1993) Design of a supplementary modulation control function for the Chester SVC. Power Deliv IEEE Trans 8(2):719–724. doi:10.1109/61.216880

    Article  Google Scholar 

  13. Bergmann K, Friedrich B, Stump K, Elliott W (1993) Digital simulation, transient network analyzer and field tests of the closed loop control of the Eddy County SVC. Power Deliv IEEE Trans 8(4):1867–1873. doi:10.1109/61.248296

    Article  Google Scholar 

  14. Zhao Q, Jiang J (1995) Robust SVC controller design for improving power system damping. Power Syst IEEE Trans 10(4):1927–1932. doi:10.1109/59.476059

    Article  Google Scholar 

  15. Zhijun E, Fang D, Chan K, Yuan S (2009) Hybrid simulation of power systems with SVC dynamic phasor model. Int J Electr Power Energy Syst 31(5):175–180. doi:10.1016/j.ijepes.2009.01.002

    Article  Google Scholar 

  16. Ogata K (2001) Modern control engineering. Prentice Hall PTR, New Jersey

    Google Scholar 

  17. Uraikul V, Chan CW, Tontiwachwuthikul P (2007) Artificial intelligence for monitoring and supervisory control of process systems. Eng Appl Artif Intell 20(2):115–131. doi:10.1016/j.engappai.2006.07.002

    Article  Google Scholar 

  18. Kalogirou SA (2003) Artificial intelligence for the modeling and control of combustion processes: a review. Prog Energy Combust Sci 29(6):515–566. doi:10.1016/s0360-1285(03)00058-3

    Article  Google Scholar 

  19. Lo K, Sadegh M (2003) Systematic method for the design of a full-scale fuzzy PID controller for SVC to control power system stability. Gener Trans Distrib 150(3):297–304. doi:10.1049/ip-gtd:20030125

    Article  Google Scholar 

  20. Ju P, Handschin E, Reyer F (1996) Genetic algorithm aided controller design with application to SVC. Gener Trans Distrib 143(3):258–262. doi:10.1049/ip-gtd:19960330

    Article  Google Scholar 

  21. Chang C, Qizhi Y (1999) Fuzzy bang-bang control of static VAR compensators for damping system-wide low-frequency oscillations. Electr Power Syst Res 49(1):45–54. doi:10.1016/S0378-7796(98)00120-5

    Article  Google Scholar 

  22. Mumyakmaz B, Jin X, Wang C, Cheng T (1999) Static VAr compensator with neural network control. In: Transmission and distribution conference, 1999 IEEE, vol 4. New Orleans, LA , IET, pp. 542–549 doi:10.1109/TDC.1999.756110

  23. Changaroon B, Srivastava S, Thukaram D, Chirarattananon S (1999) Neural network based power system damping controller for SVC. Gener Trans Distrib 146(4):370–376. doi:10.1049/ip-gtd:19990175

    Article  Google Scholar 

  24. Al-Alawi S, Ellithy K (2000) Tuning of SVC damping controllers over a wide range of load models using an artificial neural network. Int J Electr Power Energy Syst 22(6):405–420. doi:10.1016/S0142-0615(00)00008-9

    Article  Google Scholar 

  25. Modi P, Singh S, Sharma J (2005) Loadability margin calculation of power system with SVC using artificial neural network. Eng Appl Artif Intell 18(6):695–703. doi:10.1016/j.engappai.2005.01.006

    Google Scholar 

  26. Ellithy K, Al-Naamany A (2000) A hybrid neuro-fuzzy static var compensator stabilizer for power system damping improvement in the presence of load parameters uncertainty. Electr Power Syst Res 56(3):211–223. doi:10.1016/S0378-7796(00)00125-5

    Article  Google Scholar 

  27. Safari A, Mekhilef S (2011) Simulation and hardware implementation of incremental conductance MPPT with direct control method using Cuk converter. IEEE Trans Ind Electron 58(4):1154–1161. doi:10.1109/tie.2010.2048834

    Article  Google Scholar 

  28. Chen W, Liu Y, Chen J, Wu J (1998) Control of advanced static VAR generator by using recurrent neural networks. In: Power system technology, (1998) international conference on, Guangzhou, China, IEEE, pp. 839–842 doi:10.1109/ICPST.1998.729203

  29. McCluskey PC (1993) Feedforward and recurrent neural networks and genetic programs for stock market and time series forecasting. Brown University

  30. Schiller UD (2003) Analysis and comparison of algorithms for training recurrent neural networks. University Park, Citeseer, Pennsylvania

    Google Scholar 

  31. Welch RL, Ruffing SM, Venayagamoorthy GK (2009) Comparison of feedforward and feedback neural network architectures for short term wind speed prediction. In: Neural networks, international joint conference on Atlanta, GA, 2009. IEEE, pp 3335–3340: doi:10.1109/IJCNN.2009.5179034

  32. Logar AM, Corwin EM, Oldham WJBA (1993) Comparison of recurrent neural network learning algorithms. In: Neural networks, IEEE international conference on, 1993. IEEE, pp 1129–1134 doi:10.1109/icnn.1993.298716

  33. Mathur RM, Varma RK (2002) Thyristor-based FACTS controllers for electrical transmission systems. Wiley-IEEE Press, London

    Google Scholar 

  34. El-Moursi M, Sharaf A (2005) Novel controllers for the 48-pulse VSC STATCOM and SSSC for voltage regulation and reactive power compensation. Power Syst IEEE Trans 20(4):1985–1997. doi:10.1109/TPWRS.2005.856996

    Article  Google Scholar 

  35. Isidori A, Marconi L, Serrani A (2003) Robust autonomous guidance: an internal model approach. Springer Verlag, Berlin

    Book  Google Scholar 

  36. Datta A (1998) Adaptive internal model control (advances in industrial control). Springer, Berlin

    Book  Google Scholar 

  37. Datta A, Ochoa J (1996) Adaptive internal model control: design and stability analysis. Automatica 32(2):261–266. doi:10.1016/0005-1098(96)85557-9

    Article  MATH  MathSciNet  Google Scholar 

  38. Chen CJ, Chen TC (2006) Design of a power system stabilizer using a new recurrent neural network. In: Innovative computing, information and control, first international conference on Beijing, 2006. IEEE, pp. 39–43 doi:10.1109/ICICIC.2006.68

  39. He J, Malik O (1997) An adaptive power system stabilizer based on recurrent neural networks. Energy Convers IEEE Trans 12(4):413–418. doi:10.1109/60.638966

    Article  Google Scholar 

  40. Kreyszig E (2007) Advanced engineering mathematics. Wiley-India, Bangalore

    Google Scholar 

  41. Arrillaga J, Watson N, Liu Y (2007) Flexible power transmission. Wiley Online Library, New York

    Book  Google Scholar 

  42. Safari A, Mekhilef S (2011) Incremental conductance MPPT method for PV systems. In: Electrical and computer engineering (CCECE), 2011 24th Canadian Conference on, pp 000345–000347, doi:10.1109/ccece.2011.6030470

Download references

Acknowledgments

The group would like to thank Universiti Teknologi Malaysia under Flagship Grant No: QK130000.2423.00G20 for their support and funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Othman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahmani, R., Othman, M.F., Shojaei, A.A. et al. Static VAR compensator using recurrent neural network. Electr Eng 96, 109–119 (2014). https://doi.org/10.1007/s00202-013-0287-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-013-0287-5

Keywords

Navigation