Skip to main content
Log in

Computing fundamental groups from point clouds

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

We describe an algorithm for computing a finite, and typically small, presentation of the fundamental group of a finite regular CW-space. The algorithm is based on the construction of a discrete vector field on the \(3\)-skeleton of the space. A variant yields the homomorphism of fundamental groups induced by a cellular map of spaces. We illustrate how the algorithm can be used to infer information about the fundamental group \(\pi _1(K)\) of a metric space \(K\) using only a finite point cloud \(X\) sampled from the space. In the special case where \(K\) is a \(d\)-dimensional compact manifold \(K\subset \mathbb R^d\), we consider the closure of the complement of \(K\) in the \(d\)-sphere \(M_K=\overline{\mathbb S^d\!\setminus \!K}\). For a base-point \(x\) in the boundary \(\partial M_K\) of the manifold \(M_K\) one can attempt to determine, from the point cloud \(X\), the induced homomorphism of fundamental groups \(\phi :\pi _1(\partial M_K,x)\rightarrow \pi _1(M_K,x)\) in the category of finitely presented groups. We illustrate a computer implementation for \(K\) a small closed tubular neighbourhood of a tame knot in \(\mathbb R^3\). In this case the homomorphism \(\phi \) is known to be a complete ambient isotopy invariant of the knot. We observe that low-index subgroups of finitely presented groups provide useful invariants of \(\phi \). In particular, the first integral homology of subgroups \(G < \pi _1(M_K)\) of index at most six suffices to distinguish between all prime knots with 11 or fewer crossings (ignoring chirality). We plan to provide formal time estimates for our algorithm and characteristics of a high performance C++ implementation in a subsequent paper. The prototype computer implementation of the present paper has been written in the interpreted gap programming language for computational algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Boone, W.W.: The word problem. Ann. Math. 2(70), 207–265 (1959)

    Article  MathSciNet  Google Scholar 

  2. Brendel, P., Dłotko, P., Ellis, G., Juda, M., Mrozek, M.: An algorithm for the fundamental group of a regular cw-space (provisional title). In preparation, (2014)

  3. Bridson, M.R., Tweedale, M.: Deficiency and abelianized deficiency of some virtually free groups. Math. Proc. Camb. Philos. Soc. 143(2), 257–264 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. The CAPD Group. CAPD::RedHom - Reduction homology algorithms, the topological part of CAPD, 2013. http://redhom.ii.uj.edu.pl/ and http://capd.ii.uj.edu.pl/

  5. Cha, J.C., Livingston, C.: KnotInfo: table of knot invariants. KnotInfo web page, 2013. http://www.indiana.edu/~knotinfo

  6. Cohen, M.M.: A Course in Simple Homotopy Theory. Graduate Texts in Mathematics. Springer, New York (1973)

    Book  Google Scholar 

  7. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, Providence (2010)

    Google Scholar 

  8. Ellis, G.: HAP - Homological algebra programming, Version 1.10.13, 2013. http://www.gap-system.org/Packages/hap.html

  9. Ellis, G., Hegarty, F.: Computational homotopy of finite regular cw-spaces. J. Homotopy Relat. Struct. 9, 25–54 (2014). doi:10.1007/s40062-013-0029-4

  10. Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators. In: Proceedings of the sixteenth annual ACM-SIAM symposium on discrete algorithms, pages 1038–1046 (electronic). ACM, New York, (2005)

  11. Forman, R.: Morse theory for cell complexes. Adv. Math. 134(1), 90–145 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Forman, R.: A user’s guide to discrete Morse theory. Sém. Lothar. Combin., 48:Art. B48c, 35, (2002)

  13. The GAP Group. GAP - Groups, algorithms, and programming, Version 4.5.6. http://www.gap-system.org (2013)

  14. Geoghegan, R.: Topological Methods in Group Theory, volume 243 of Graduate Texts in Mathematics. Springer, New York (2008)

    Book  Google Scholar 

  15. González-Díaz, R., Real, P.: On the cohomology of 3D digital images. Discrete Appl. Math. 147(2–3), 245–263 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gordon, C.McA, Luecke, J.: Knots are determined by their complements. J. Am. Math. Soc. 2(2), 371–415 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Harker, S., Mischaikow, K., Mrozek, M., Nanda, V.: Discrete Morse theoretic algorithms for computing homology of complexes and maps. Found. Comput. Math. 14, 151–184 (2014). doi:10.1007/s10208-013-9145-0

  18. Harker, S., Mischaikow, K., Mrozek, M., Nanda, V., Wagner, H., Juda, M., Dłotko, P.: The efficiency of a homology algorithm based on discrete morse theory and coreductions. Proceedings of the 3rd International Workshop on Computational Topology in Image Context, Chipiona, Spain, November 2010 1, 41–47 (2010)

  19. Jones, D.W.: A general theory of polyhedral sets and the corresponding \(T\)-complexes. Dissertationes Math. (Rozprawy Mat.) 266, 110 (1988)

    MathSciNet  Google Scholar 

  20. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology, volume 157 of Applied Mathematical Sciences. Springer, New York (2004)

    Google Scholar 

  21. Kaczynski, T., Mrozek, M., Ślusarek, M.: Homology computation by reduction of chain complexes. Comput. Math. Appl. 34(4), 59–70 (1998)

    Article  Google Scholar 

  22. Kim, J., Jin, M., Zhou, Q.-Y., Luo, F.: Computing fundamental group of general 3-manifold. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y., Rhyne, T.-M., Monroe, L. (eds.) Advances in Visual Computing, volume 5358 of Lecture Notes in Computer Science, pp. 965–974. Springer, Berlin (2008)

    Google Scholar 

  23. Knot Atlas. Knot Atlas. http://katlas.math.toronto.edu/wiki/ (2013)

  24. Letscher, D.: On persistent homotopy, knotted complexes and the Alexander module. In: Proceedings of the 3rd innovations in theoretical computer science conference, ITCS ’12, pages 428–441, New York, NY, USA, ACM (2012)

  25. Massey, W.S.: A basic course in algebraic topology, volume 127 of Graduate Texts in Mathematics. Springer, New York (1991)

    Google Scholar 

  26. Novikov, P.S.: Ob algoritmičeskoĭ nerazrešimosti problemy toždestva slov v teorii grupp. Trudy Mat. Inst. im. Steklov. no. 44. Izdat. Akad. Nauk SSSR, Moscow, (1955)

  27. Nureki, D., Watanabe, K., Fukai, S., Ishii, R., Endo, Y., Hori, H., Yokoyama, S.: Deep knot structure for construction of active site and cofactor binding site of trna modification enzyme. Structure, 12, 593. http://www.rcsb.org/pdb/explore/explore.do?structureId=1V2X (2004)

  28. Palmieri, J.H., et al.: Finite simplicial complexes. Sage v5.10. http://www.sagemath.org/doc/reference/homology/sage/homology/simplicial_complex.html (2009)

  29. Rees, S., Soicher, L.H.: An algorithmic approach to fundamental groups and covers of combinatorial cell complexes. J. Symb. Comput. 29(1), 59–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Spanier, E.H.: Algebraic Topology, Corrected Reprint of the 1966 Original. Springer, New York (1981)

    Google Scholar 

  31. Stein, W.A., et al.: Sage mathematics software (Version 5.10). The Sage development team. http://www.sagemath.org (2013)

  32. Waldhausen, F.: On irreducible \(3\)-manifolds which are sufficiently large. Ann. Math. (2) 87, 56–88 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  33. Whitehead, J.H.C.: Combinatorial homotopy. I. Bull. Am. Math. Soc. 55, 213–245 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  34. Whitehead, J.H.C.: Combinatorial homotopy. II. Bull. Am. Math. Soc. 55, 453–496 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  35. Whitehead, J.H.C.: Simple homotopy types. Am. J. Math. 72, 1–57 (1950)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Ellis.

Additional information

P.D. is supported by the Grant DARPA: FA9550-12-1-0416 and AFOSR: FA9550-14-1-0012. G.E. was partially supported by the European Science Foundation network on Applied and Computational Algebraic Topology and by Polish MNSzW, Grant N N201 419639. G.E. thanks the IST, Austria for its hospitality during the writing of this paper. M.M. was partially supported by Polish MNSzW, Grant N N201 419639.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brendel, P., Dłotko, P., Ellis, G. et al. Computing fundamental groups from point clouds. AAECC 26, 27–48 (2015). https://doi.org/10.1007/s00200-014-0244-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-014-0244-1

Keywords

Navigation