Skip to main content
Log in

Functional block of IL-17 cytokine promotes bone healing by augmenting FOXO1 and ATF4 activity in cortical bone defect model

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We determine the effect of interleukin (IL)-17 neutralizing antibody on new bone regeneration. Anti-IL-17 antibody promoted new bone regeneration in cortical bone defect model by augmenting FOXO1 and ATF4 activity thereby decreasing oxidative stress. Our study demonstrates the bone healing and regeneration potential of neutralizing IL-17antibody in osteoporotic fractures.

Introduction

The immune system plays important role in the fracture healing process. However, fracture healing is prolonged in disorders associated with systemic inflammation. Fracture healing is decelerated in osteoporosis, condition linked with systemic inflammation. Bone regeneration therapies like recombinant human BMP2 are associated with serious side effects. Studies have been carried out where agents like denosumab and infliximab enhance bone regeneration in osteoporotic conditions. Our previous studies show the osteoprotective and immunoprotective effects of neutralizing IL-17 antibody. Here, we determine the effect of IL-17 neutralizing antibody on new bone regeneration and compare its efficacy with known osteoporotic therapies.

Methods

For the study, female BALB/c mice were ovariectomized or sham operated and left for a month followed by a 0.6-mm drill-hole injury in femur mid-diaphysis. The treatment was commenced next day onwards with anti-IL-17, anti-RANKL (Receptor activator of nuclear factor kappa-B ligand), parathyroid hormone (PTH), or alendronate for a period of 3, 10, or 21 days. Animals were then autopsied, and femur bones were dissected out for micro-CT scanning, confocal microscopy, and gene and protein expression studies.

Results

Micro-CT analysis showed that anti-IL-17 antibody promoted bone healing at days 10 and 21, and the healing effect observed was significantly better than Ovx, anti-RANKL antibody, and ALN, and equal to PTH. Anti-IL-17 also enhanced new bone regeneration as assessed by calcein-labeling studies. Additionally, anti-IL-17 therapy enhanced expression of osteogenic markers and decreased oxidative stress at the injury site.

Conclusion

Overall, our study demonstrates bone healing and regeneration potential of neutralizing IL-17 antibody in osteoporotic fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA (2008) Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 87:107–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Chang J, Liu F, Lee M et al (2013) NF-kappaB inhibits osteogenic differentiation of mesenchymal stem cells by promoting beta-catenin degradation. Proc Natl Acad Sci U S A 110:9469–9474

    Article  PubMed  PubMed Central  Google Scholar 

  3. Marsell R, Einhorn TA (2011) The biology of fracture healing. Injury 42:551–555

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chan JK, Glass GE, Ersek A et al (2015) Low-dose TNF augments fracture healing in normal and osteoporotic bone by up-regulating the innate immune response. EMBO Mol Med 7:547–561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Claes L, Recknagel S, Ignatius A (2012) Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 8:133–143

    Article  PubMed  CAS  Google Scholar 

  6. Shuid AN, Mohamad S, Mohamed N, Fadzilah FM, Mokhtar SA, Abdullah S, Othman F, Suhaimi F, Muhammad N, Soelaiman IN (2010) Effects of calcium supplements on fracture healing in a rat osteoporotic model. J Orthop Res 28:1651–1656

    Article  PubMed  CAS  Google Scholar 

  7. Oryan A, Alidadi S, Moshiri A, Maffulli N (2014) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9:18

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dixit M, Raghuvanshi A, Gupta CP et al (2015) Medicarpin, a natural pterocarpan, heals cortical bone defect by activation of notch and Wnt canonical signaling pathways. PLoS One 10:e0144541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Zara JN, Siu RK, Zhang X et al (2011) High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo. Tissue Eng Part A 17:1389–1399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Garrison KR, Donell S, Ryder J, Shemilt I, Mugford M, Harvey I, Song F (2007) Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review. Health Technol Assess 11(1–150):iii–iiv

    Google Scholar 

  11. Gerstenfeld LC, Sacks DJ, Pelis M, Mason ZD, Graves DT, Barrero M, Ominsky MS, Kostenuik PJ, Morgan EF, Einhorn TA (2009) Comparison of effects of the bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing. J Bone Miner Res Off J Am Soc Bone Miner Res 24:196–208

    Article  CAS  Google Scholar 

  12. Einhorn TA (2010) Can an anti-fracture agent heal fractures? Clin Cases Miner Bone Metab 7:11–14

    PubMed  PubMed Central  Google Scholar 

  13. Kakar S, Einhorn TA, Vora S et al (2007) Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J Bone Miner Res Off J Am Soc Bone Miner Res 22:1903–1912

    Article  CAS  Google Scholar 

  14. Barnes GL, Kakar S, Vora S, Morgan EF, Gerstenfeld LC, Einhorn TA (2008) Stimulation of fracture-healing with systemic intermittent parathyroid hormone treatment. J Bone Joint Surg Am 90(Suppl 1):120–127

    Article  PubMed  Google Scholar 

  15. Warden SJ, Komatsu DE, Rydberg J, Bond JL, Hassett SM (2009) Recombinant human parathyroid hormone (PTH 1-34) and low-intensity pulsed ultrasound have contrasting additive effects during fracture healing. Bone 44:485–494

    Article  PubMed  CAS  Google Scholar 

  16. Sikon A, Batur P Profile of teriparatide in the management of postmenopausal osteoporosis. Int J Womens Health 2:37–44

  17. Pietrogrande L Update on the efficacy, safety, and adherence to treatment of full length parathyroid hormone, PTH (1-84), in the treatment of postmenopausal osteoporosis. Int J Womens Health 1:193–203

  18. Durmuşlar1 MC, Türer A, Ballı U, Yılmaz Z, Önger ME, Çelik HH, Vatansever A (2016) The effect of infliximab on bone healing in osteoporotic rats. European Journal of Inflammation

  19. Tyagi AM, Mansoori MN, Srivastava K, Khan MP, Kureel J, Dixit M, Shukla P, Trivedi R, Chattopadhyay N, Singh D (2014) Enhanced immunoprotective effects by anti-IL-17 antibody translates to improved skeletal parameters under estrogen deficiency compared with anti-RANKL and anti-TNF-alpha antibodies. J Bone Miner Res Off J Am Soc Bone Miner Res 29:1981–1992

    Article  CAS  Google Scholar 

  20. Khedgikar V, Kushwaha P, Gautam J et al (2013) Withaferin A: a proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone. Cell Death Dis 4:e778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Diwan AD, Leong A, Appleyard R, Bhargav D, Fang ZM, Wei A (2013) Bone morphogenetic protein-7 accelerates fracture healing in osteoporotic rats. Indian J Orthop 47:540–546

    Article  PubMed  PubMed Central  Google Scholar 

  22. Campbell TM, Wong WT, Mackie EJ (2003) Establishment of a model of cortical bone repair in mice. Calcif Tissue Int 73:49–55

    Article  PubMed  CAS  Google Scholar 

  23. Andersen MA (1989) Cortical bone repair. The relationship of the lacunar-canalicular system and intercellular gap junctions to the repair process. J Bone Joint Surg Am 71:953

    Article  PubMed  CAS  Google Scholar 

  24. He YX, Zhang G, Pan XH et al (2011) Impaired bone healing pattern in mice with ovariectomy-induced osteoporosis: a drill-hole defect model. Bone 48:1388–1400

    Article  PubMed  Google Scholar 

  25. Tyagi AM, Srivastava K, Mansoori MN, Trivedi R, Chattopadhyay N, Singh D (2012) Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis. PLoS One 7:e44552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ono T, Okamoto K, Nakashima T, Nitta T, Hori S, Iwakura Y, Takayanagi H (2016) IL-17-producing gammadelta T cells enhance bone regeneration. Nat Commun 7:10928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Toben D, Schroeder I, El Khassawna T et al (2011) Fracture healing is accelerated in the absence of the adaptive immune system. J Bone Miner Res Off J Am Soc Bone Miner Res 26:113–124

    Article  CAS  Google Scholar 

  28. Colburn NT, Zaal KJ, Wang F, Tuan RS (2009) A role for gamma/delta T cells in a mouse model of fracture healing. Arthritis Rheum 60:1694–1703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Mason JB, Terry BC, Merchant SS, Mason HM, Nazokkarmaher M (2015) Manipulation of ovarian function significantly influenced trabecular and cortical bone volume, architecture and density in mice at death. PLoS One 10:e0145821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Mountziaris PM, Spicer PP, Kasper FK, Mikos AG (2011) Harnessing and modulating inflammation in strategies for bone regeneration. Tissue Eng Part B Rev 17:393–402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Liu JW, Chandra D, Rudd MD, Butler AP, Pallotta V, Brown D, Coffer PJ, Tang DG (2005) Induction of prosurvival molecules by apoptotic stimuli: involvement of FOXO3a and ROS. Oncogene 24:2020–2031

    Article  PubMed  CAS  Google Scholar 

  32. Lehtinen MK, Yuan Z, Boag PR et al (2006) A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125:987–1001

    Article  PubMed  CAS  Google Scholar 

  33. Rached MT, Kode A, Xu L, Yoshikawa Y, Paik JH, Depinho RA, Kousteni S (2010) FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts. Cell Metab 11:147–160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Laine A, Martin B, Luka M, Mir L, Auffray C, Lucas B, Bismuth G, Charvet C (2015) Foxo1 is a T cell-intrinsic inhibitor of the RORgammat-Th17 program. J Immunol 195:1791–1803

    Article  PubMed  CAS  Google Scholar 

  35. Xia R, L B, Yang X (2015) ATF4 reprograms T cell metabolism in response to the environmental stress and is required for Th1 immune responses. J Immunol vol. 194(1 Supplement):130.4

    Google Scholar 

  36. Datta NS, Abou-Samra AB (2009) PTH and PTHrP signaling in osteoblasts. Cell Signal 21:1245–1254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Pacifici R (2016) The role of IL-17 and TH17 cells in the bone catabolic activity of PTH. Front Immunol 7:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific and Industrial Research (CSIR), Government of India for generous funding. MD would like to acknowledge the Department of Biotechnology (DBT), Government of India; KBS would like to acknowledge the Indian Council of Medical Research (ICMR), Government of India; and RP would like to acknowledge the University Grants Commission (UGC) for grant of fellowships. Mr. Geet K Nagar is acknowledged for helping in histology work. Dr. Kavita Singh is acknowledged for helping in confocal microscopy facility of SAIF Division.

Supporting grants

Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), Council of Scientific and Industrial Research (CSIR), Government of India. CDRI communication no: 9464.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Singh.

Ethics declarations

Conflicts of interest

None.

Author’s roles

DS and MD conceived and designed the experiments. MD carried out all the experiments. KR and RP helped with the animal-related experiments. MD and DS analyzed the data. DS wrote the manuscript.

Electronic supplementary material

Supplementary Table 1

(DOC 44 kb)

Supplementary Table 2

(DOC 34 kb)

ESM 1

(DOCX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, M., Singh, K.B., Prakash, R. et al. Functional block of IL-17 cytokine promotes bone healing by augmenting FOXO1 and ATF4 activity in cortical bone defect model. Osteoporos Int 28, 2207–2220 (2017). https://doi.org/10.1007/s00198-017-4012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4012-5

Keywords

Navigation