Skip to main content

Advertisement

Log in

Serum carcinoembryonic antigen-related cell adhesion molecule 1 level in postmenopausal women: correlation with β-catenin and bone mineral density

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Many epidemiological studies have shown that in some tumors carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) and β-catenin appear to be related. However, it remains to be established whether CEACAM1 is related to β-catenin in osteoporosis. Here, we reveal that CEACAM1 might influence the canonical Wnt/β-catenin pathway to modulate bone metabolism in postmenopausal osteoporosis.

Introduction

The aim of this study is to assess the serum level of CEACAM1 in postmenopausal women and its correlation with β-catenin and bone mineral density (BMD).

Methods

The BMD was measured at the lumbar spine (L1–L4) or the femoral neck using dual-energy X-ray absorptiometry (DXA). Serum CEACAM1, β-catenin, receptor activator of nuclear factor kappa-B (RANKL), osteoprotegerin (OPG), β-isomerized C-terminal crosslinking of type I collagen (β-CTX), intact N-terminal propeptide of type I collagen (PINP), estradiol, and insulin were measured in 350 postmenopausal women. Patients were divided according to lumbar spine or femur neck T-scores into osteoporosis (group I), osteopenia (group II), and normal bone mineral density, the latter serving as control.

Results

Serum CEACAM1 levels were significantly lower in group I and II compared to those in control subjects (P < 0.001). Serum CEACAM1 levels correlated positively with β-catenin and BMD, but correlated negatively to the ratio between RANKL and OPG.

Conclusion

This study provides evidence that decreased serum CEACAM1 levels are related to low BMD in postmenopausal women, and that serum CEACAM1 levels correlated positively to β-catenin. It suggests that CEACAM1 might influence the canonical Wnt/β-catenin pathway to modulate bone metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boyle IT (1991) Bones for the future. Acta Paediatr Scand Suppl 373:58–65

    Article  CAS  PubMed  Google Scholar 

  2. McClung MR (2003) The menopause and HRT. Prevention and management of osteoporosis. Best Pract Res Clin Endocrinol Metab 17:53–71

    Article  CAS  PubMed  Google Scholar 

  3. McNamara LM (2010) Perspective on post-menopausal osteoporosis: establishing an interdisciplinary understanding of the sequence of events from the molecular level to whole bone fractures. J R Soc Interface 7:353–372

    Article  CAS  PubMed  Google Scholar 

  4. Li C, Yang Z, Li Z, Ma Y, Zhang L, Zheng C, Qiu W, Wu X, Wang X, Li H, Tang J, Qian M, Li D, Wang P, Luo J, Liu M (2011) Maslinic acid suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss by regulating RANKL-mediated NF-kappaB and MAPK signaling pathways. J Bone Miner Res 26:644–656

    Article  CAS  PubMed  Google Scholar 

  5. Baron R, Rawadi G (2007) Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 148:2635–2643

    Article  CAS  PubMed  Google Scholar 

  6. Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116:1202–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gifre L, Ruiz-Gaspa S, Monegal A, Nomdedeu B, Filella X, Guanabens N, Peris P (2013) Effect of glucocorticoid treatment on Wnt signalling antagonists (sclerostin and Dkk-1) and their relationship with bone turnover. Bone 57:272–276

    Article  CAS  PubMed  Google Scholar 

  8. Xu XJ, Shen L, Yang YP, Zhu R, Shuai B, Li CG, Wu MX (2013) Serum beta-catenin levels associated with the ratio of RANKL/OPG in patients with postmenopausal osteoporosis. Int J Endocrinol 2013:534352

    PubMed  PubMed Central  Google Scholar 

  9. Jin L, Li Y, Chen CJ, Sherman MA, Le K, Shively JE (2008) Direct interaction of tumor suppressor CEACAM1 with beta catenin: identification of key residues in the long cytoplasmic domain. Exp Biol Med (Maywood) 233:849–859

    Article  CAS  Google Scholar 

  10. Chen D, Iijima H, Nagaishi T, Nakajima A, Russell S, Raychowdhury R, Morales V, Rudd CE, Utku N, Blumberg RS (2004) Carcinoembryonic antigen-related cellular adhesion molecule 1 isoforms alternatively inhibit and costimulate human T cell function. J Immunol 172:3535–3543

    Article  CAS  PubMed  Google Scholar 

  11. Singer BB, Scheffrahn I, Obrink B (2000) The tumor growth-inhibiting cell adhesion molecule CEACAM1 (C-CAM) is differently expressed in proliferating and quiescent epithelial cells and regulates cell proliferation. Cancer Res 60:1236–1244

    CAS  PubMed  Google Scholar 

  12. Heckt T, Bickert T, Jeschke A, Seitz S, Schulze J, Ito WD, Zimmermann W, Amling M, Schinke T, Horst AK, Keller J (2014) Increased osteoclastogenesis in mice lacking the carcinoembryonic antigen-related cell adhesion molecule 1. PLoS ONE 9, e114360

    Article  PubMed  PubMed Central  Google Scholar 

  13. Michigami T, Shimizu N, Williams PJ, Niewolna M, Dallas SL, Mundy GR, Yoneda T (2000) Cell-cell contact between marrow stromal cells and myeloma cells via VCAM-1 and alpha(4)beta(1)-integrin enhances production of osteoclast-stimulating activity. Blood 96:1953–1960

    CAS  PubMed  Google Scholar 

  14. Pearse RN, Sordillo EM, Yaccoby S, Wong BR, Liau DF, Colman N, Michaeli J, Epstein J, Choi Y (2001) Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci U S A 98:11581–11586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tanaka Y, Maruo A, Fujii K, Nomi M, Nakamura T, Eto S, Minami Y (2000) Intercellular adhesion molecule 1 discriminates functionally different populations of human osteoblasts: characteristic involvement of cell cycle regulators. J Bone Miner Res 15:1912–1923

    Article  CAS  PubMed  Google Scholar 

  16. Barker N, Clevers H (2000) Catenins, Wnt signaling and cancer. BioEssays 22:961–965

    Article  CAS  PubMed  Google Scholar 

  17. Eslami B, Zhou S, Van Eekeren I, LeBoff MS, Glowacki J (2011) Reduced osteoclastogenesis and RANKL expression in marrow from women taking alendronate. Calcif Tissue Int 88:272–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krause U, Harris S, Green A, Ylostalo J, Zeitouni S, Lee N, Gregory CA (2010) Pharmaceutical modulation of canonical Wnt signaling in multipotent stromal cells for improved osteoinductive therapy. Proc Natl Acad Sci U S A 107:4147–4152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Johnson ML, Kamel MA (2007) The Wnt signaling pathway and bone metabolism. Curr Opin Rheumatol 19:376–382

    Article  CAS  PubMed  Google Scholar 

  20. Case N, Ma M, Sen B, Xie Z, Gross TS, Rubin J (2008) Beta-catenin levels influence rapid mechanical responses in osteoblasts. J Biol Chem 283:29196–29205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang R, Oyajobi BO, Harris SE, Chen D, Tsao C, Deng HW, Zhao M (2013) Wnt/beta-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone 52:145–156

    Article  CAS  PubMed  Google Scholar 

  22. Kulkarni NH, Onyia JE, Zeng Q, Tian X, Liu M, Halladay DL, Frolik CA, Engler T, Wei T, Kriauciunas A, Martin TJ, Sato M, Bryant HU, Ma YL (2006) Orally bioavailable GSK-3alpha/beta dual inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo. J Bone Miner Res 21:910–920

    Article  CAS  PubMed  Google Scholar 

  23. Borchert KM, Galvin RJ, Frolik CA, Hale LV, Halladay DL, Gonyier RJ, Trask OJ, Nickischer DR, Houck KA (2005) High-content screening assay for activators of the Wnt/Fzd pathway in primary human cells. Assay Drug Dev Technol 3:133–141

    Article  CAS  PubMed  Google Scholar 

  24. Price MA (2006) CKI, there's more than one: casein kinase I family members in Wnt and hedgehog signaling. Genes Dev 20:399–410

    Article  CAS  PubMed  Google Scholar 

  25. Patel S, Doble B, Woodgett JR (2004) Glycogen synthase kinase-3 in insulin and Wnt signalling: a double-edged sword? Biochem Soc Trans 32:803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang SKMHM (2010) Decreased osteoclastogenesis and high bone mass in mice with impaired insulin clearance due to liver-specific inactivation to CEACAM1. Bone 46:1138–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Poy MN, Ruch RJ, Fernstrom MA, Okabayashi Y, Najjar SM (2002) Shc and CEACAM1 interact to regulate the mitogenic action of insulin. J Biol Chem 277:1076–1084

    Article  CAS  PubMed  Google Scholar 

  28. Kuespert K, Pils S, Hauck CR (2006) CEACAMs: their role in physiology and pathophysiology. Curr Opin Cell Biol 18:565–571

    Article  CAS  PubMed  Google Scholar 

  29. Arron JR, Choi Y (2000) Bone versus immune system. Nature 408:535–536

    Article  CAS  PubMed  Google Scholar 

  30. Muller B (2002) Cytokine imbalance in non-immunological chronic disease. Cytokine 18:334–339

    Article  PubMed  Google Scholar 

  31. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  CAS  PubMed  Google Scholar 

  32. Mulcahy LE, Taylor D, Lee TC, Duffy GP (2011) RANKL and OPG activity is regulated by injury size in networks of osteocyte-like cells. Bone 48:182–188

    Article  CAS  PubMed  Google Scholar 

  33. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  CAS  PubMed  Google Scholar 

  34. Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone 40:251–264

    Article  CAS  PubMed  Google Scholar 

  35. Kung AW, Fan T, Xu L, Xia WB, Park IH, Kim HS, Chan SP, Lee JK, Koh L, Soong YK, Soontrapa S, Songpatanasilp T, Turajane T, Yates M, Sen S (2013) Factors influencing diagnosis and treatment of osteoporosis after a fragility fracture among postmenopausal women in Asian countries: a retrospective study. BMC Womens Health 13:7

    Article  PubMed  PubMed Central  Google Scholar 

  36. Riggs BL, Khosla S, Melton LR (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302

    Article  CAS  PubMed  Google Scholar 

  37. Wang JL, Sun SZ, Qu X, Liu WJ, Wang YY, Lv CX, Sun JZ, Ma R (2011) Clinicopathological significance of CEACAM1 gene expression in breast cancer. Chin J Physiol 54:332–338

    Article  PubMed  Google Scholar 

  38. Hyder SM, Nawaz Z, Chiappetta C, Stancel GM (2000) Identification of functional estrogen response elements in the gene coding for the potent angiogenic factor vascular endothelial growth factor. Cancer Res 60:3183–3190

    CAS  PubMed  Google Scholar 

  39. Ergun S, Kilik N, Ziegeler G, Hansen A, Nollau P, Gotze J, Wurmbach JH, Horst A, Weil J, Fernando M, Wagener C (2000) CEA-related cell adhesion molecule 1: a potent angiogenic factor and a major effector of vascular endothelial growth factor. Mol Cell 5:311–320

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the NSFC (Natural Science Foundation of China) (Grant No: 81473492 and 81403257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Shen.

Ethics declarations

Conflicts of interests

None

Additional information

C. Ma and B. Shuai contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Shuai, B., Shen, L. et al. Serum carcinoembryonic antigen-related cell adhesion molecule 1 level in postmenopausal women: correlation with β-catenin and bone mineral density. Osteoporos Int 27, 1529–1535 (2016). https://doi.org/10.1007/s00198-015-3408-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3408-3

Keywords

Navigation