Skip to main content
Log in

Changes in calcitropic hormones, bone markers and insulin-like growth factor I (IGF-I) during pregnancy and postpartum: a controlled cohort study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Pregnancy and lactation cause major changes in calcium homeostasis and bone metabolism. This population-based cohort study presents the physiological changes in biochemical indices of calcium homeostasis and bone metabolism during pregnancy and lactation

Introduction

We describe physiological changes in calcium homeostasis, calcitropic hormones and bone metabolism during pregnancy and lactation.

Methods

We studied 153 women planning pregnancy (n = 92 conceived) and 52 non-pregnant, age-matched female controls. Samples were collected prior to pregnancy, once each trimester and 2, 16 and 36 weeks postpartum. The controls were followed in parallel.

Results

P-estradiol (E2), prolactin and 1,25-dihydroxyvitamin D (1,25(OH)2D) increased (p < 0.001) during pregnancy, whereas plasma levels of parathyroid hormone (P-PTH) and calcitonin decreased (p < 0.01). Insulin-like growth factor I (IGF-I) was suppressed (p < 0.05) in early pregnancy but peaked in the third trimester. Postpartum, E2 was low (p < 0.05); prolactin decreased according to lactation status (p < 0.05). 1,25(OH)2D was normal and IGF-I was again reduced (p < 0.05). P-PTH and calcitonin increased postpartum. From early pregnancy, markers of bone resorption and formation rose and fall, respectively (p < 0.001). From the third trimester, bone formation markers increased in association with IGF-I changes (p < 0.01). Postpartum increases in bone turnover markers were associated with lactation status (p < 0.001). During lactation, plasma phosphate was increased, whereas calcium levels tended to be decreased which may stimulate PTH levels during and after prolonged lactation.

Conclusion

The increased calcium requirements in early pregnancy are not completely offset by increased intestinal calcium absorption caused by high 1,25(OH)2D since changes in bone markers indicated a negative bone balance. The rise in bone formation in late pregnancy may be initiated by a spike in IGF-I levels. The high bone turnover in lactating women may be related to high prolactin and PTH levels, low E2 levels and perhaps increased parathyroid hormone-related protein levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Naylor KE, Iqbal P, Fledelius C, Fraser RB, Eastell R (2000) The effect of pregnancy on bone density and bone turnover. J Bone Miner Res 15:129–137

    Article  PubMed  CAS  Google Scholar 

  2. Cross NA, Hillman LS, Allen SH, Krause GF, Vieira NE (1995) Calcium homeostasis and bone metabolism during pregnancy, lactation, and postweaning: a longitudinal study. Am J Clin Nutr 61:514–523

    PubMed  CAS  Google Scholar 

  3. Kent GN, Price RI, Gutteridge DH, Allen JR, Rosman KJ, Smith M, Bhagat CI, Wilson SG, Retallack RW (1993) Effect of pregnancy and lactation on maternal bone mass and calcium metabolism. Osteoporos Int 3(Suppl 1):44–47

    Article  PubMed  Google Scholar 

  4. Ulrich U, Miller PB, Eyre DR, Chesnut CH III, Schlebusch H, Soules MR (2003) Bone remodeling and bone mineral density during pregnancy. Arch Gynecol Obstet 268:309–316

    Article  PubMed  CAS  Google Scholar 

  5. Paoletti AM, Orru M, Floris L, Guerriero S, Ajossa S, Romagnino S, Melis GB (2003) Pattern of bone markers during pregnancy and their changes after delivery. Horm Res 59:21–29

    Article  PubMed  CAS  Google Scholar 

  6. Haliloglu B, Ilter E, Aksungar FB, Celik A, Coksuer H, Gunduz T, Yucel E, Ozekici U (2011) Bone turnover and maternal 25(OH) vitamin D3 levels during pregnancy and the postpartum period: should routine vitamin D supplementation be increased in pregnant women? Eur J Obstet Gynecol Reprod Biol 158:24–27

    Article  PubMed  CAS  Google Scholar 

  7. Kovacs CS (2011) Calcium and bone metabolism disorders during pregnancy and lactation. Endocrinol Metab Clin North Am 40:795–826

    Article  PubMed  CAS  Google Scholar 

  8. Favus M (2006) Primer on the metabolic bone diseases and disorders of mineral metabolism, vol 6. American Society for Bone and Mineral Research, Washington, DC, pp. 50–132

  9. Black AJ, Topping J, Durham B, Farquharson RG, Fraser WD (2000) A detailed assessment of alterations in bone turnover, calcium homeostasis, and bone density in normal pregnancy. J Bone Miner Res 15:557–563

    Article  PubMed  CAS  Google Scholar 

  10. More C, Bhattoa HP, Bettembuk P, Balogh A (2003) The effects of pregnancy and lactation on hormonal status and biochemical markers of bone turnover. Eur J Obstet Gynecol Reprod Biol 106:209–213

    Article  PubMed  CAS  Google Scholar 

  11. Ritchie LD, Fung EB, Halloran BP, Turnlund JR, Van Loan MD, Cann CE, King JC (1998) A longitudinal study of calcium homeostasis during human pregnancy and lactation and after resumption of menses. Am J Clin Nutr 67:693–701

    PubMed  CAS  Google Scholar 

  12. Specker BL, Tsang RC, Ho ML (1991) Changes in calcium homeostasis over the first year postpartum: effect of lactation and weaning. Obstet Gynecol 78:56–62

    PubMed  CAS  Google Scholar 

  13. Greer FR, Tsang RC, Searcy JE, Levin RS, Steichen JJ (1982) Mineral homeostasis during lactation- relationship to serum 1,25-dihydroxyvitamin D, 25-hydroxyvitamin D, parathyroid hormone and calcitonin. Am J Clin Nutr 36:431–437

    PubMed  CAS  Google Scholar 

  14. Krebs NF, Reidinger CJ, Robertson AD, Brenner M (1997) Bone mineral density changes during lactation: maternal, dietary, and biochemical correlates. Am J Clin Nutr 65:1738–1746

    PubMed  CAS  Google Scholar 

  15. Cross NA, Hillman LS, Allen SH, Krause GF (1995) Changes in bone mineral density and markers of bone remodeling during lactation and postweaning in women consuming high amounts of calcium. J Bone Miner Res 10:1312–1320

    Article  PubMed  CAS  Google Scholar 

  16. Moller UK, Vieth SS, Mosekilde L, Rejnmark L (2012) Changes in bone mineral density and body composition during pregnancy and postpartum. A controlled cohort study. Osteoporos Int 23:1213–1223

    Article  PubMed  CAS  Google Scholar 

  17. Drinkwater BL, Chesnut CH III (1991) Bone density changes during pregnancy and lactation in active women: a longitudinal study. Bone Miner 14:153–160

    Article  PubMed  CAS  Google Scholar 

  18. Kaur M, Godber IM, Lawson N, Baker PN, Pearson D, Hosking DJ (2003) Changes in serum markers of bone turnover during normal pregnancy. Ann Clin Biochem 40:508–513

    Article  PubMed  CAS  Google Scholar 

  19. Seriwatanachai D, Thongchote K, Charoenphandhu N, Pandaranandaka J, Tudpor K, Teerapornpuntakit J, Suthiphongchai T, Krishnamra N (2008) Prolactin directly enhances bone turnover by raising osteoblast-expressed receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio. Bone 42:535–546

    Article  PubMed  CAS  Google Scholar 

  20. Wilson SG, Retallack RW, Kent JC, Worth GK, Gutteridge DH (1990) Serum free 1,25-dihydroxyvitamin D and the free 1,25-dihydroxyvitamin D index during a longitudinal study of human pregnancy and lactation. Clin Endocrinol (Oxf) 32:613–622

    Article  CAS  Google Scholar 

  21. Reddy GS, Norman AW, Willis DM, Goltzman D, Guyda H, Solomon S, Philips DR, Bishop JE, Mayer E (1983) Regulation of vitamin D metabolism in normal human pregnancy. J Clin Endocrinol Metab 56:363–370

    Article  PubMed  CAS  Google Scholar 

  22. Hillman L, Sateesha S, Haussler M, Wiest W, Slatopolsky E, Haddad J (1981) Control of mineral homeostasis during lactation: interrelationships of 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D, 1,25-dihydroxyvitamin D, parathyroid hormone, calcitonin, prolactin, and estradiol. Am J Obstet Gynecol 139:471–476

    PubMed  CAS  Google Scholar 

  23. Kent GN, Price RI, Gutteridge DH, Rosman KJ, Smith M, Allen JR, Hickling CJ, Blakeman SL (1991) The efficiency of intestinal calcium absorption is increased in late pregnancy but not in established lactation. Calcif Tissue Int 48:293–295

    Article  PubMed  CAS  Google Scholar 

  24. Kalkwarf HJ, Specker BL, Heubi JE, Vieira NE, Yergey AL (1996) Intestinal calcium absorption of women during lactation and after weaning. Am J Clin Nutr 63:526–531

    PubMed  CAS  Google Scholar 

  25. Vargas Zapata CL, Donangelo CM, Woodhouse LR, Abrams SA, Spencer EM, King JC (2004) Calcium homeostasis during pregnancy and lactation in Brazilian women with low calcium intakes: a longitudinal study. Am J Clin Nutr 80:417–422

    PubMed  Google Scholar 

  26. Møller UK, Streym S, Heickendorff L, Mosekilde L, Rejnmark L (2012) Effects of 25OHD concentrations on chances of pregnancy and pregnancy outcomes: a cohort study in healthy Danish women. Eur J Clin Nutr 66(7):862–868

    Article  Google Scholar 

  27. Hermann AP, Thomsen J, Vestergaard P, Mosekilde L, Charles P (1999) Assessment of kalcium intake. A quick method compared to a 7 days food diary. Calcif Tissue Int 64(S1):S82

    Google Scholar 

  28. Quadri KH, Bernardini J, Greenberg A, Laifer S, Syed A, Holley JL (1994) Assessment of renal function during pregnancy using a random urine protein to creatinine ratio and Cockcroft–Gault formula. Am J Kidney Dis 24:416–420

    PubMed  CAS  Google Scholar 

  29. Hojskov CS, Heickendorff L, Moller HJ (2010) High-throughput liquid-liquid extraction and LCMSMS assay for determination of circulating 25(OH) vitamin D3 and D2 in the routine clinical laboratory. Clin Chim Acta 411:114–116

    Article  PubMed  Google Scholar 

  30. Frystyk J, Dinesen B, Orskov H (1995) Non-competitive time-resolved immunofluorometric assays for determination of human insulin-like growth factor I and II. Growth Regul 5:169–176

    PubMed  CAS  Google Scholar 

  31. Schifter S (1993) A new highly sensitive radioimmunoassay for human calcitonin useful for physiological studies. Clin Chim Acta 215:99–109

    Article  PubMed  CAS  Google Scholar 

  32. Ardawi MS, Nasrat HA, BA'Aqueel HS (1997) Calcium-regulating hormones and parathyroid hormone-related peptide in normal human pregnancy and postpartum: a longitudinal study. Eur J Endocrinol 137:402–409

    Article  PubMed  CAS  Google Scholar 

  33. Turner M, Barre PE, Benjamin A, Goltzman D, Gascon-Barre M (1988) Does the maternal kidney contribute to the increased circulating 1,25-dihydroxyvitamin D concentrations during pregnancy? Miner Electrolyte Metab 14:246–252

    PubMed  CAS  Google Scholar 

  34. Kubota M, Ohno J, Shiina Y, Suda T (1982) Vitamin D metabolism in pregnant rabbits: differences between the maternal and fetal response to administration of large amounts of vitamin D3. Endocrinology 110:1950–1956

    Article  PubMed  CAS  Google Scholar 

  35. Kovacs CS, Kronenberg HM (1997) Maternal-fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. Endocr Rev 18:832–872

    Article  PubMed  CAS  Google Scholar 

  36. Novakovic B, Sibson M, Ng HK, Manuelpillai U, Rakyan V, Down T, Beck S, Fournier T, Evain-Brion D, Dimitriadis E, Craig JM, Morley R, Saffery R (2009) Placenta-specific methylation of the vitamin D 24-hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface. J Biol Chem 284:14838–14848

    Article  PubMed  CAS  Google Scholar 

  37. Potashnik G, Lunenfeld E, Levitas E, Itskovitz J, Albutiano S, Yankowitz N, Sonin Y, Levy J, Glezerman M, Shany S (1992) The relationship between endogenous oestradiol and vitamin D3 metabolites in serum and follicular fluid during ovarian stimulation for in-vitro fertilization and embryo transfer. Hum Reprod 7:1357–1360

    PubMed  CAS  Google Scholar 

  38. Kumar R, Abboud CF, Riggs BL (1980) The effect of elevated prolactin levels on plasma 1,25-dihydroxyvitamin D and intestinal absorption of calcium. Mayo Clin Proc 55:51–53

    PubMed  CAS  Google Scholar 

  39. Strewler GJ (2000) The physiology of parathyroid hormone-related protein. N Engl J Med 342:177–185

    Article  PubMed  CAS  Google Scholar 

  40. Bertelloni S, Baroncelli GI, Pelletti A, Battini R, Saggese G (1994) Parathyroid hormone-related protein in healthy pregnant women. Calcif Tissue Int 54:195–197

    Article  PubMed  CAS  Google Scholar 

  41. Hirota Y, Anai T, Miyakawa I (1997) Parathyroid hormone-related protein levels in maternal and cord blood. Am J Obstet Gynecol 177:702–706

    Article  PubMed  CAS  Google Scholar 

  42. Thiebaud D, Janisch S, Koelbl H, Hanzal E, Jacquet AF, Leodolter S, Burckhardt P, Pecherstorfer M (1993) Direct evidence of a parathyroid related protein gradient between the mother and the newborn in humans. Bone Miner 23:213–221

    Article  PubMed  CAS  Google Scholar 

  43. Fraser DR (1980) Regulation of the metabolism of vitamin D. Physiol Rev 60:551–613

    PubMed  CAS  Google Scholar 

  44. Peppone LJ, Hebl S, Purnell JQ, Reid ME, Rosier RN, Mustian KM, Palesh OG, Huston AJ, Ling MN, Morrow GR (2010) The efficacy of calcitriol therapy in the management of bone loss and fractures: a qualitative review. Osteoporos Int 21:1133–1149

    Article  PubMed  CAS  Google Scholar 

  45. Fuglsang J, Lauszus F, Flyvbjerg A, Ovesen P (2003) Human placental growth hormone, insulin-like growth factor I and -II, and insulin requirements during pregnancy in type 1 diabetes. J Clin Endocrinol Metab 88:4355–4361

    Article  CAS  Google Scholar 

  46. Chellakooty M, Vangsgaard K, Larsen T, Scheike T, Falck-Larsen J, Legarth J, Andersson AM, Main KM, Skakkebaek NE, Juul A (2004) A longitudinal study of intrauterine growth and the placental growth hormone (GH)-insulin-like growth factor I axis in maternal circulation: association between placental GH and fetal growth. J Clin Endocrinol Metab 89:384–391

    Article  PubMed  CAS  Google Scholar 

  47. Lacroix MC, Guibourdenche J, Frendo JL, Muller F, Evain-Brion D (2002) Human placental growth hormone—a review. Placenta 23(Suppl A):S87–S94

    Article  PubMed  Google Scholar 

  48. Kveiborg M, Flyvbjerg A, Rattan SI, Kassem M (2000) Changes in the insulin-like growth factor-system may contribute to in vitro age-related impaired osteoblast functions. Exp Gerontol 35:1061–1074

    Article  PubMed  CAS  Google Scholar 

  49. Carney SL (1997) Calcitonin and human renal calcium and electrolyte transport. Miner Electrolyte Metab 23:43–47

    PubMed  CAS  Google Scholar 

  50. Dobnig H, Kainer F, Stepan V, Winter R, Lipp R, Schaffer M, Kahr A, Nocnik S, Patterer G, Leb G (1995) Elevated parathyroid hormone-related peptide levels after human gestation: relationship to changes in bone and mineral metabolism. J Clin Endocrinol Metab 80:3699–3707

    Article  PubMed  CAS  Google Scholar 

  51. Sowers M, Eyre D, Hollis BW, Randolph JF, Shapiro B, Jannausch ML, Crutchfield M (1995) Biochemical markers of bone turnover in lactating and nonlactating postpartum women. J Clin Endocrinol Metab 80:2210–2216

    Article  PubMed  CAS  Google Scholar 

  52. Laskey MA, Prentice A, Hanratty LA, Jarjou LM, Dibba B, Beavan SR, Cole TJ (1998) Bone changes after 3 mo of lactation: influence of calcium intake, breast-milk output, and vitamin D-receptor genotype. Am J Clin Nutr 67:685–692

    PubMed  CAS  Google Scholar 

  53. Kovacs CS, Chik CL (1995) Hyperprolactinemia caused by lactation and pituitary adenomas is associated with altered serum calcium, phosphate, parathyroid hormone (PTH), and PTH-related peptide levels. J Clin Endocrinol Metab 80:3036–3042

    Article  PubMed  CAS  Google Scholar 

  54. Lippuner K, Zehnder HJ, Casez JP, Takkinen R, Jaeger P (1996) PTH-related protein is released into the mother's bloodstream during location: evidence for beneficial effects on maternal calcium-phosphate metabolism. J Bone Miner Res 11:1394–1399

    Article  PubMed  CAS  Google Scholar 

  55. Grill V, Hillary J, Ho PM, Law FM, MacIsaac RJ, MacIsaac IA, Moseley JM, Martin TJ (1992) Parathyroid hormone-related protein: a possible endocrine function in lactation. Clin Endocrinol (Oxf) 37:405–410

    Article  CAS  Google Scholar 

  56. Sowers MF, Hollis BW, Shapiro B, Randolph J, Janney CA, Zhang D, Schork A, Crutchfield M, Stanczyk F, Russell-Aulet M (1996) Elevated parathyroid hormone-related peptide associated with lactation and bone density loss. JAMA 276:549–554

    Article  PubMed  CAS  Google Scholar 

  57. Caplan RH, Wickus GG, Sloane K, Silva PD (1995) Serum parathyroid hormone-related protein levels during lactation. J Reprod Med 40:216–218

    PubMed  CAS  Google Scholar 

  58. Juppner H, Wolf M, Salusky IB (2010) FGF23: more than a regulator of renal phosphate handling? J Bone Miner Res 25:2091–2097

    Google Scholar 

  59. Mortensen LH, Diderichsen F, Smith GD, Andersen AM (2009) The social gradient in birthweight at term: quantification of the mediating role of maternal smoking and body mass index. Hum Reprod 24:2629–2635

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support provided from The Danish Agency for Science, Technology and Innovation; The Aarhus University Research Foundation; The AP Moeller Foundation; the Svend Fældings Humanitære Fond; The Lundbeck Foundation; the Faculty of Health Sciences at Aarhus University; The Novo Nordic Foundation and Helga and Peter Kornings Foundation.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. K. Møller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Møller, U.K., Streym, S., Mosekilde, L. et al. Changes in calcitropic hormones, bone markers and insulin-like growth factor I (IGF-I) during pregnancy and postpartum: a controlled cohort study. Osteoporos Int 24, 1307–1320 (2013). https://doi.org/10.1007/s00198-012-2062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-012-2062-2

Keywords

Navigation