, Volume 24, Issue 3, pp 835-847

The health burden and costs of incident fractures attributable to osteoporosis from 2010 to 2050 in Germany—a demographic simulation model

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Summary

To predict the burden of incident osteoporosis attributable fractures (OAF) in Germany, an economic simulation model was built. The burden of OAF will sharply increase until 2050. Future demand for hospital and long-term care can be expected to substantially rise and should be considered in future healthcare planning.

Introduction

The aim of this study was to develop an innovative simulation model to predict the burden of incident OAF occurring in the German population, aged >50, in the time period of 2010 to 2050.

Methods

A Markov state transition model based on five fracture states was developed to estimate costs and loss of quality adjusted life years (QALYs). Demographic change was modelled using individual generation life tables. Direct (inpatient, outpatient, long-term care) and indirect fracture costs attributable to osteoporosis were estimated by comparing Markov cohorts with and without osteoporosis.

Results

The number of OAF will rise from 115,248 in 2010 to 273,794 in 2050, cumulating to approximately 8.1 million fractures (78 % women, 22 % men) during the period between 2010 and 2050. Total undiscounted incident OAF costs will increase from around 1.0 billion Euros in 2010 to 6.1 billion Euros in 2050. Discounted (3 %) cumulated costs from 2010 to 2050 will amount to 88.5 billion Euros (168.5 undiscounted), with 76 % being direct and 24 % indirect costs. The discounted (undiscounted) cumulated loss of QALYs will amount to 2.5 (4.9) million.

Conclusions

We found that incident OAF costs will sharply increase until the year 2050. As a consequence, a growing demand for long-term care as well as hospital care can be expected and should be considered in future healthcare planning. To support decision makers in managing the future burden of OAF, our model allows to economically evaluate population- and risk group-based interventions for fracture prevention in Germany.