Skip to main content
Log in

Modifiable lifestyle factors affecting bone health using calcaneus quantitative ultrasound in adolescent girls

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

One hundred and fourteen girls were measured for calcaneus QUS (stiffness index score), calcium intake, weight, and total hours spent in physical activity (moderate to high-impact activities and low to no-impact activities). Multiple regression analysis indicated that hours spent in moderate to high-impact activities, current calcium intake, and weight significantly predicted SI.

Introduction

To determine the influence of modifiable lifestyle factors on adolescent girls’ bone health measured by calcaneus quantitative ultrasound (QUS).

Methods

One hundred and fourteen girls, ages 14–18 (15.97 ± .7), enrolled in high school physical education classes, were measured for calcaneus QUS (stiffness index score), height, weight, current calcium intake from 2–3 day food records, and estimated total hours spent in physical activity from kindergarten to present. Cumulative physical activity hours were separated into two classifications (according to their estimated strain from ground reaction force): moderate to high-impact activities and low to no-impact activities.

Results

Pearson correlations between stiffness index (SI) and age, height, weight, current calcium intake, and hours spent in moderate to high-impact versus low to no-impact activities indicated a positive relationships between SI and weight (r = .259, p = .005), current calcium intake (r = .286, p = .002), and hours spent in moderate to high-impact activities (r = .451, p < .001). Multiple regression between SI and the above independent variables indicated that collectively, hours spent in moderate to high-impact activities, current calcium intake, and weight (r 2 = .363, p = <.001) significantly predicted SI.

Conclusion

Our data indicate that moderate to high-impact activities, current calcium intake, and weight positively influence bone properties of the calcaneus in adolescent girls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey DA (1997) The Saskatchewan pediatric bone mineral accrual study: bone mineral acquisition during the growing years. Int J Sports Med 18:S191–S194

    Article  PubMed  Google Scholar 

  2. Hui SL, Slemenda CW, Johnston CC Jr (1990) The contribution of bone loss to postmenopausal osteoporosis. Osteoporos Int 1(1):30–34

    Article  PubMed  CAS  Google Scholar 

  3. Bachrach LK (2005) Osteoporosis and measurement of bone mass in children and adolescents. Endocrinol Metab Clin N Am 34:521–535

    Article  Google Scholar 

  4. Specker BL, Schoenau E (2005) Quantitative bone analysis in children: current methods and recommendations. J Pediatr 146(6):726–731

    Article  PubMed  Google Scholar 

  5. Njeh CF, Boivin CM, Langton CM (1997) The role of ultrasound in the assessment of osteoporosis: a review. Osteoporosis Int 7:7–22

    Article  CAS  Google Scholar 

  6. Njeh CF, Fuerst T, Diessel E et al (2001) Is quantitative ultrasound dependent on bone structure? A reflection. Osteoporos Int 12:1–15

    PubMed  CAS  Google Scholar 

  7. Falcini F, Bindi G, Ermini M et al (2000) Comparison of quantitative calcaneal ultrasound and dual energy X-ray absorptiometry in the evaluation of osteoporotic risk in children with chronic rheumatic disease. Calcif Tissue Int 67(1):9–23

    Article  Google Scholar 

  8. Lum CK, Wang MC, Moore E et al (1999) A comparison of calcaneus ultrasound and dual X-ray absorptiometry in healthy North American youths and young adults. J Clin Densitom 2(4):403–411

    Article  PubMed  CAS  Google Scholar 

  9. Mughal MZ, Langton CM, Utretch G et al (1996) Comparison between broad-band ultrasound attenuation of the calcaneum and total body bone mineral density in children. Acta Paediatr 85(6):663–665

    PubMed  CAS  Google Scholar 

  10. Krall EA, Dawson-Hughes B (1993) Heritable and life-style determinants of bone mineral density. J Bone Miner Res 8(1):1–9

    PubMed  CAS  Google Scholar 

  11. Pocock NA, Eisman JA, Hooper L et al (1987) Genetic determinants of bone mass in adults: a twin study. J of Clin Invest 80:706–710

    Article  CAS  Google Scholar 

  12. Arnett MG, Lutz B (2002) Effects of rope-jump training on the os calcis stiffness index of postpubescent girls. Med Sci Sports Exerc 34(12):1913–1919

    Article  PubMed  Google Scholar 

  13. Witzke KA, Snow CM (2000) Effects of plyometric jump training on bone mass in adolescent girls. Med Sci Sports Exerc 32(6):1051–1057

    Article  PubMed  CAS  Google Scholar 

  14. Johnston CC, Miller JZ, Slemenda CW et al (1992) Calcium supplementation and increased in bone mineral density in children. N Engl J Med 327(2):82–87

    Article  PubMed  Google Scholar 

  15. Wang MC, Crawford PB, Hudes M et al (2003) Diet in midpuberty and sedentary activity in prepuberty predict peak bone mass. Am J Clin Nutr 77(2):495–503

    PubMed  CAS  Google Scholar 

  16. Lin JD, Chen JF, Chang HY et al (2001) Evaluation of bone mineral density by quantitative ultrasound of bone in 16,862 subjects during routine health examination. Br J Radiol 74:602–606

    PubMed  CAS  Google Scholar 

  17. Martins SL, Curtis KM, Glasier AF (2006) Combined hormonal contraception and bone health: a systematic review. Contraception 73(5):445–469

    Article  PubMed  CAS  Google Scholar 

  18. Lloyd T, Petit MA, Lin HM (2004) Lifestyle factors and the development of bone mass and bone strength in young women. J Pediatr 144(6):776–782

    PubMed  Google Scholar 

  19. Thompson FE, Subar AF (2001) Dietary assessment methodology. In: AM Coulston, CL Rock, ER Monsen (eds) (2001) Nutrition in the prevention and treatment of disease, Academic Press, pp 3–30

  20. Rifas-Shiman SL, Gillman MW, Field AE et al (2001) Comparing physical activity questionnaires for youth: seasonal versus annual format. Am J Prev Med 20(4):282–285

    Article  PubMed  CAS  Google Scholar 

  21. Groothausen J, Siemer H, Kemper HCG et al (1997) Influence of peak strain on lumbar bone mineral density: an analysis of 15-year physical activity in young males and females. Pediatr Exerc Sci 9:159–173

    Google Scholar 

  22. Magkos F, Manios Y, Babaroutsi E et al (2005) Contralateral differences in quantitative ultrasound of the heel: the important of side in clinical practice. Osteoporos Int 16(8):879–886

    Article  PubMed  Google Scholar 

  23. Lees B, Stevenson JC (1993) Preliminary evaluation of a new ultrasound bone densitometer. Calcif Tissue Int 53:149–152

    Article  PubMed  CAS  Google Scholar 

  24. Sawyer A, Moore S, Fielding KT et al (2001) Calcaneus ultrasound measurements in a convenience sample of healthy youth. J Clin Densitom 4(2):111–120

    Article  PubMed  CAS  Google Scholar 

  25. Sasaki M, Harata S, Kumazawa Y et al (2000) Bone mineral density and osteo sono assessment index in adolescents. J Ortho Sci 5(3):185–191

    Article  CAS  Google Scholar 

  26. Daly RM, Rich PA, Klein R (1997) Influence of high impact loading on ultrasound bone measurements in children: a cross-sectional report. Calcif Tissue Int 60:401–404

    Article  PubMed  CAS  Google Scholar 

  27. Cvijetić S, Barić IC, Bolanča S et al (2003) Ultrasound bone measurement in children and adolescents: correlation with nutrition, puberty, anthropometry, and physical activity. J Clin Epidemiol 56(6):591–597

    Article  PubMed  Google Scholar 

  28. Lehtonen-Veromaa M, Möttönen T, Nuotio I et al (2000) Influence of physical activity on ultrasound and dual-energy x-ray absorptiometry bone measurements in peripubertal girls: a cross-sectional study. Calcif Tissue Int 66(4):248–254

    Article  PubMed  CAS  Google Scholar 

  29. Nurmi-Lawton JA, Baxter-Jones AD, Mirwald RL et al (2004) Evidence of sustained skeletal benefits from impact-loading exercise in young females: a 3-year longitudinal study. J Bone Miner Res 19(2):314–322

    Article  PubMed  Google Scholar 

  30. Babaroutsi E, Magkos F, Manios Y et al (2005) Lifestyle factors affecting heel ultrasound in Greek females across different life stages. Osteoporos Int 16(5):552–561

    Article  PubMed  Google Scholar 

  31. Wang MC, Moore EC, Crawford PB et al (1999) Influence of pre-adolescent diet on quantitative ultrasound measurements of the calcaneus in young adult women. Osteoporos Int 9(6):532–535

    PubMed  CAS  Google Scholar 

  32. Lanou AJ, Berkow SE, Barnard ND (2005) Calcium, dairy products, and bone health in children and young adults: a reevaluation of the evidence. Pediatrics 115(3):736–743

    Article  PubMed  Google Scholar 

  33. Hans D, Dargent-Molina P, Schott AM et al (1996) Ultrasonographic heel measurement to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348:511–514

    Article  PubMed  CAS  Google Scholar 

  34. Arden NK, Baker J, Hogg C et al (1996) The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J Bone Min Res 11(4):530–534

    Article  CAS  Google Scholar 

  35. Jaworski M, Lebiedowski M, Lorene RS et al (1995) Ultrasound bone measurement in pediatric subjects. Calcif Tissue Int 56(5):368–371

    Article  PubMed  CAS  Google Scholar 

  36. Sundberg M, Gardsell P, Johnell O et al (1998) Comparison of quantitative ultrasound measurements in calcaneus with DXA and SXA at other skeletal sites: a population-based study on 280 children aged 11–16 years. Osteoporos Int 8(5):410–417

    Article  PubMed  CAS  Google Scholar 

  37. Fielding KT, Nix DA, Bachrach LK (2003) Comparison of calcaneus ultrasound and dual X-ray absorptiometry in children at risk of osteopenia. J Clin Densitom 6(1):7–15

    Article  PubMed  Google Scholar 

  38. Cummings SR, Black DM, Nevitt MC et al (1993) Bone density at various sites for prediction of hip fractures. Lancet 341:72–75

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Clay Robinson for his assistance in performing the calcaneus QUS measurements, Dr. Chris Williams and Dr. Teri Rust for their assistance with the statistical analysis, the high school teachers who assisted with this research and, most importantly, the participants. This study was supported by a Lewis-Clark State College faculty development grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Robinson.

Additional information

The authors have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, M.L., Winters-Stone, K., Gabel, K. et al. Modifiable lifestyle factors affecting bone health using calcaneus quantitative ultrasound in adolescent girls. Osteoporos Int 18, 1101–1107 (2007). https://doi.org/10.1007/s00198-007-0359-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0359-3

Keywords

Navigation