Skip to main content
Log in

Pharmakogenetik in der Rechtsmedizin

Pharmacogenetics in legal medicine

  • CME Weiterbildung · Zertifizierte Fortbildung
  • Published:
Rechtsmedizin Aims and scope Submit manuscript

Zusammenfassung

Die Pharmakogenetik beschäftigt sich mit den genetisch bedingten Unterschieden bei der Arzneimittel-, Drogen oder Giftwirkung und ist somit auch für die rechtsmedizinische Begutachtung von Bedeutung. Die häufigsten Sequenzvariationen in der Desoxyribonukleinsäure („deoxyribonucleic acid“, DNA) sind die „single nucleotide polymorphisms“ (SNP). Neben den metabolisierenden Enzymen, z. B. Zytochrom-P450- (CYP-)Isoenzyme, können Transportproteine oder auch Rezeptorproteine betroffen sein. Führen sie tatsächlich zu Änderungen in der Funktionalität der Proteine, kann es zu deutlichen interindividuellen Unterschieden in der Pharmakokinetik und Pharmakodynamik kommen. Aber auch Faktoren wie Komedikation, Alter, Geschlecht, Hormon- und Ernährungsstatus sowie Umweltfaktoren und Komorbidität sind von großer Bedeutung. Dies wird hauptsächlich durch Induktion oder Inhibition der Aktivität der Funktionsproteine bewirkt. Diese Interaktionen sind bei der Begutachtung ebenfalls zu berücksichtigen.

Abstract

Pharmacogenetics deals with the differences in the effects of medicaments, drugs of abuse or poisons caused by genetic differences. It is also of importance for furnishing expert reports in legal medicine. The most common variations in deoxyribonucleic acid (DNA) sequences are single nucleotide polymorphisms (SNP). Metabolizing enzymes, e.g. cytochrome P450 (CYP) isoenzymes, as well as transport proteins and receptor proteins can also be affected. Significant interindividual differences in pharmacokinetics and pharmacodynamics can occur when the functionality of proteins is altered. However, factors such as comedication, age, sex, hormonal and nutritional status, as well as environmental factors and comorbidity are also of importance. This is mainly caused by induction or inhibition of functional proteins. These interactions must also be considered in the furnishing of expert reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279(15):1200–1205

    Article  PubMed  CAS  Google Scholar 

  2. Schönhöfer PS, Lelgemann M, Maxen A, Wille H von (1998) Häufigkeit von Arzneimittelrisiken und Risikokommunikation. In: Hart D, Kemmnitz W, Schnieders C (Hrsg) Arzneimittelrisiken: Kommunikation und Rechtsverfassung. Nomos, Baden-Baden, S 109–120

  3. Aktories K, Förstermann U, Hofmann F, Starke K (2004) Allgemeine und spezielle Pharmakologie und Toxikologie. Urban & Fischer, München

  4. Court MH, Duan SX, Hesse LM et al (2001) Cytochrome P-450 2B6 is responsible for interindividual variability of propofol hydroxylation by human liver microsomes. Anesthesiology 94(1):110–119

    Article  PubMed  CAS  Google Scholar 

  5. Turpeinen M, Raunio H, Pelkonen O (2006) The functional role of CYP2B6 in human drug metabolism: substrates and inhibitors in vitro, in vivo and in silico. Curr Drug Metab 7(7):705–714

    Article  PubMed  CAS  Google Scholar 

  6. Flockhart DA (2007) Drug interactions: cytochrome P450 drug interaction table, 2010. Indiana University School of Medicine. Ref Type: Online Source. Zugegriffen 01 November 2010

    Google Scholar 

  7. Mikus G, Bochner F, Eichelbaum M et al (1994) Endogenous codeine and morphine in poor and extensive metabolisers of the CYP2D6 (debrisoquine/sparteine) polymorphism. J Pharmacol Exp Ther 268(2):546–551

    PubMed  CAS  Google Scholar 

  8. Kirchheiner J, Schmidt H, Tzvetkov M et al (2007) Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J 7(4):257–265

    Article  PubMed  CAS  Google Scholar 

  9. Yue QY, Alm C, Svensson JO, Sawe J (1997) Quantification of the O- and N-demethylated and the glucuronidated metabolites of codeine relative to the debrisoquine metabolic ratio in urine in ultrarapid, rapid, and poor debrisoquine hydroxylators. Ther Drug Monit 19(5):539–542

    Article  PubMed  CAS  Google Scholar 

  10. He YJ, Brockmoller J, Schmidt H et al (2008) CYP2D6 ultrarapid metabolism and morphine/codeine ratios in blood: was it codeine or heroin? J Anal Toxicol 32(2): 178–182

    PubMed  CAS  Google Scholar 

  11. Kang JM, Kim N, Lee DH et al (2008) Effect of the CYP2C19 polymorphism on the eradication rate of Helicobacter pylori infection by 7-day triple therapy with regular proton pump inhibitor dosage. J Gastroenterol Hepatol 23(8 Pt 1):1287–1291

    Article  PubMed  CAS  Google Scholar 

  12. Evans WE, McLeod HL (2003) Pharmacogenomics – drug disposition, drug targets, and side effects. N Engl J Med 348(6):538–549

    Article  PubMed  CAS  Google Scholar 

  13. Kosarac B, Fox AA, Collard CD (2009) Effect of genetic factors on opioid action. Curr Opin Anaesthesiol 22(4):476–482

    Article  PubMed  Google Scholar 

  14. Nagashima M, Katoh R, Sato Y et al (2007) Is there genetic polymorphism evidence for individual human sensitivity to opiates? Curr Pain Headache Rep 11(2):115–123

    Article  PubMed  Google Scholar 

  15. Rendic S, Di Carlo FJ (1997) Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 29(1–2):413–580

    Google Scholar 

  16. Eichelbaum M, Burk O (2001) CYP3A genetics in drug metabolism. Nat Med 7(3):285–287

    Article  PubMed  CAS  Google Scholar 

  17. Brauch H, Murdter TE, Eichelbaum M, Schwab M (2009) Pharmacogenomics of tamoxifen therapy. Clin Chem 55(10):1770–1782

    Article  PubMed  CAS  Google Scholar 

  18. Niemi M, Backman JT, Fromm MF et al (2003) Pharmacokinetic interactions with rifampicin: clinical relevance. Clin Pharmacokinet 42(9):819–850

    Article  PubMed  CAS  Google Scholar 

  19. Gasche Y, Daali Y, Fathi M et al (2004) Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med 351(27):2827–2831

    Article  PubMed  CAS  Google Scholar 

  20. Yin OQ, Lam SS, Lo CM, Chow MS (2004) Rapid determination of five probe drugs and their metabolites in human plasma and urine by liquid chromatography/tandem mass spectrometry: application to cytochrome P450 phenotyping studies. Rapid Commun Mass Spectrom 18(23):2921–2933

    Article  PubMed  CAS  Google Scholar 

  21. Kroese M, Zimmern RL, Pinder SE (2007) HER2 status in breast cancer – an example of pharmacogenetic testing. J R Soc Med 100(7):326–329

    Article  PubMed  Google Scholar 

  22. Grossniklaus D (2010) Testing of VKORC1 and CYP2C9 alleles to guide warfarin dosing. Test category: pharmacogenomic (treatment). PLoS Curr 2

    Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Krämer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krämer, T. Pharmakogenetik in der Rechtsmedizin. Rechtsmedizin 21, 233–244 (2011). https://doi.org/10.1007/s00194-011-0746-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00194-011-0746-0

Schlüsselwörter

Keywords

Navigation