Skip to main content
Log in

Separation attenuation in swept shock wave–boundary-layer interactions using different microvortex generator geometries

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A numerical study is conducted to determine the effectiveness of six different microvortex generator geometries in controlling swept shock wave/boundary-layer interactions. The geometries considered are base ramp, base ramp with declining angle of \(45\,^{\circ }\), blunt ramp, split ramp, thick vanes, and ramped vanes. Microvortex generators with a gap were found to be better suited for delaying the separation. Thick vanes showed the largest delay in separation among the devices studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gaitonde, D., Knight, D.: Numerical investigation of bleed on three-dimensional turbulent interactions due to sharp fins. AIAA J. 29(11), 1878–1885 (1991)

    Article  MATH  Google Scholar 

  2. Micro-vortex generators enhance aircraft performance. NASA fact sheet (FS-2000-06-52-LaRC) (2000)

  3. Babinsky, H., Li, Y., Pitt Ford, C.: Microramp control of supersonic oblique shock wave/boundary layer interactions. AIAA J. 47(3), 668–675 (2009)

  4. Lu, F.K., Li, Q., Liu, C.: Microvortex generators in high-speed flow. Progr. Aerosp. Sci. 53, 30–45 (2012)

    Article  Google Scholar 

  5. Panaras, A.G., Lu, F.K.: Micro-vortex generators for shock wave/boundary layer interactions. Progr. Aerosp. Sci. 74, 16–47 (2015)

    Article  Google Scholar 

  6. Anderson, B.H., Tinapple, J., Surber, L.: Optimal control of shock wave turbulent boundary layer interactions using micro-array actuation. In: 3rd AIAA Flow Control Conference, San Francisco, CA, AIAA Paper 2006-3197 (2006)

  7. Holden, H., Babinsky, H.: Effects of microvortex generators on separated normal shock/boundary layer interactions. J. Aircraft 44(1), 170–174 (2007)

    Article  Google Scholar 

  8. Lee, S., Loth, E.: Supersonic boundary-layer interactions with various micro-vortex generator geometries. Aeronaut. J. 113(1149), 683–697 (2009)

    Article  Google Scholar 

  9. Lee, S., Loth, E., Babinsky, H.: Normal shock boundary layer control with various vortex generator geometries. Comput. Fluids 49(1), 233–246 (2011)

    Article  MATH  Google Scholar 

  10. Li, Q., Liu, C.: Declining angle effects of the trailing edge of a microramp vortex generator. J. Aircraft 47(6), 2086–2095 (2010)

    Article  Google Scholar 

  11. Martis, R.R., Misra, A., Singh, A.: Effect of microramps on separated swept shock wave/boundary layer interactions. AIAA J. 52(3), 591–603 (2014)

    Article  Google Scholar 

  12. Martis, R.R., Misra, A.: Effect of height of microvortex generators on swept shock wave boundary layer interactions. CEAS Aeronaut. J. 4(3), 315–326 (2013)

    Article  Google Scholar 

  13. Ghosh, S., Choi, J.I., Edwards, J.R.: RANS and hybrid LES/RANS simulations of the effects of micro vortex generators using immersed boundary methods. In: 30th Fluid Dynamics Conference and Exhibit, Seattle, Washington, AIAA Paper 2008-3728 (2008)

  14. Weiss, J.M., Smith, W.A.: Preconditioning applied to variable and constant density flows. AIAA J. 33(11), 2050–2057 (1995)

    Article  MATH  Google Scholar 

  15. Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J.: A new \(k\)-\(\epsilon \) eddy viscosity model for high Reynolds number turbulent flows: model development and validation. Comput. Fluids 24(3), 227–238 (1995)

    Article  MATH  Google Scholar 

  16. Rodi, W.: Experience with two-layer models combining the k-\(\epsilon \) model with a one-equation model near the wall. In: 29th AIAA Aerospace Sciences Meeting, Reno, NV, AIAA Paper 1991-0216 (1991)

  17. Launder, B.E., Sharma, B.I.: Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letter Heat Mass Transf. 1(2), 131–138 (1974)

  18. Wolfshtein, M.: The velocity and temperature distribution in one- dimensional flow with turbulence augmentation and pressure gradient. Int. J. Heat Mass Transf. 12, 301–318 (1969)

    Article  Google Scholar 

  19. Kim, K.S., Lee, Y., Alvi, F.S., Settles, G.S., Horstman, C.: Skin-friction measurements and computational comparison of swept shock/boundary-layer interactions. AIAA J. 29(10), 1643–1650 (1991)

    Article  MATH  Google Scholar 

  20. Lu, F.K., Settles, G.S.: Upstream-influence scaling of sharp fin interactions. AIAA J. 29(7), 1180–1181 (1991)

    Article  Google Scholar 

  21. Lu, F.K.: Quasiconical free interaction between a swept shock and a turbulent boundary layer. AIAA J. 31(4), 686–692 (1993)

    Article  Google Scholar 

  22. Settles, G.S., Lu, F.K.: Conical similarity of shock/boundary layer interactions generated by swept and unswept fins. AIAA J. 23(7), 1021–1026 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Vice Chancellor, Defence Institute of Advanced Technology (DIAT), Pune, India, for constant encouragement and support. The authors also thank the Department of Computer Engineering and the Department of Aerospace Engineering, DIAT, for the infrastructural support provided in conducting this study. The authors gratefully acknowledge Holger Babinsky of Cambridge University for providing results of his experiments and for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Martis.

Additional information

Communicated by F. Lu and A. Higgins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martis, R.R., Misra, A. Separation attenuation in swept shock wave–boundary-layer interactions using different microvortex generator geometries. Shock Waves 27, 747–760 (2017). https://doi.org/10.1007/s00193-016-0690-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-016-0690-8

Keywords

Navigation