Skip to main content
Log in

Using a shock control bump to improve the performance of an axial compressor blade section

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Here, we use numerical analysis to study the effects of a shock control bump (SCB) on the performance of a transonic axial compressor blade section and to optimize its shape and location to improve the compressor performance. A section of the NASA rotor 67 blade is used for this study. Two Bézier curves, each consisting of seven control points, are used to model the suction and pressure surfaces of the blade section. The SCB is modeled with the Hicks–Henne function and, using five design parameters, is added to the suction side. The total pressure loss through a cascade of blade sections is selected as the cost function. A continuous adjoint optimization method is used along with a RANS solver to find a new blade section shape. A grid independence study is performed, and all optimization and flow solver algorithms are validated. Two single-point optimizations are performed in the design condition and in an off-design condition. It is shown that both optimized shapes have overall better performance for both on-design and off-design conditions. An analysis is given regarding how the SCB has changed the wave structure between blade sections resulting in a more favorable flow pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Center of Excellence in Aerospace Systems (Sharif University of Technology).

References

  1. Hadjadj, A.: Large-eddy simulation of shock-boundary-layer interaction. AIAA J. 50(12), 2919–2927 (2012)

    Article  Google Scholar 

  2. Hamid, M.D.A., Hasan, A.B.M.T., Alimuzzaman, S.M., Matsuo, S., Setoguchi, T.: Compressible flow characteristics around a biconvex arc airfoil in a channel. Propuls. Power Res. 3(1), 29–40 (2014)

    Article  Google Scholar 

  3. Biollo, R., Benini, E.: Recent advances in transonic axial compressor aerodynamics. Prog. Aerosp. Sci. 56, 1–18 (2013)

    Article  Google Scholar 

  4. Wang, D.X., He, L., Li, Y.S., Wells, R.G.: Adjoint aerodynamic design optimization for blades in multistage turbomachines—Part II: Validation and application. J. Turbomach. 132(2), 021012 (11 pp) (2010)

  5. Lian, Y., Liou, M.S.: Multi-objective optimization of transonic compressor blade using evolutionary algorithm. J. Propuls. Power 21(6), 979–987 (2005)

    Article  Google Scholar 

  6. Biollo, R., Benini, E.: State-of-Art of Transonic Axial Compressors. Advances in Gas Turbine Technology, InTech (2011). Accessed 4 Nov 2011

  7. Lee, S.Y., Kim, K.Y.: Design optimization of axial flow compressor blades with three-dimensional Navier–Stokes solver. KSME Int. J. 14(9), 1005–1012 (2000)

    Article  Google Scholar 

  8. Wang, D.X., He, L.: Adjoint aerodynamic design optimization for blades in multistage turbomachines—Part I: Methodology and verification. J. Turbomach. 132(2), 021011 (14 pp) (2010)

  9. Walther, B., Nadarajah, S.: Constrained adjoint-based aerodynamic shape optimization of a single-stage transonic compressor. J. Turbomach. 135(2), 021017 (10 pp) (2013)

  10. Lian, Y., Liou, M.S.: Aerostructural optimization of a transonic compressor rotor. J Propuls. Power 22(4), 880–888 (2006)

    Article  Google Scholar 

  11. Ashill, P.R., Fulker, J.L., Shires, A.: A novel technique for controlling shock strength of laminar-flow aerofoil sections. The First European Forum on Laminar Flow Technology, Hamburg, Germany, March 1992, Defence Research Agency in Farnborough (1992)

  12. Lee, B.H.K.: Self-sustained shock oscillations on airfoils at transonic speeds. Prog. Aerosp. Sci. 37(2), 147–196 (2001)

    Article  MathSciNet  Google Scholar 

  13. Rahman, M.M., Hasan, A.B.M.T., Islam, A.K.M.S., Matsuo, S., Setoguchi, T.: Computation of transonic internal flow around a biconvex airfoil with cavity. J. Mech. Sci. Technol. 29(6), 2415–2421 (2015)

    Article  Google Scholar 

  14. Gaitonde, D.V.: Progress in shock wave/boundary layer interactions. Prog. Aerosp. Sci. 72, 80–99 (2015)

    Article  Google Scholar 

  15. Babinsky, H., Harvey, J.K.: Shock Wave-Boundary-Layer Interactions. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  16. Mazaheri, K., Kiani, K.C., Nejati, A., Zeinalpour, M., Taheri, R.: Optimization and analysis of shock wave/boundary layer interaction for drag reduction by Shock Control Bump. Aerosp. Sci. Technol. 42, 196–208 (2015)

    Article  Google Scholar 

  17. Mazaheri, K., Kiani, K.C., Nejati, A., Zeinalpour, M., Taheri, R.: Application of gradient-based adjoint multi-point optimization of shock control bump for transonic airfoils. Shock Waves (2016). doi:10.1007/s00193-015-0591-2

  18. Bruce, P.J.K., Colliss, S.P.: Review of research into shock control bumps. Shock Waves 25(5), 451–471 (2015)

    Article  Google Scholar 

  19. Strazisar, A.J., Wood, J.R., Hathaway, M.D., Suder, K.L.: Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor, NASA Technical Paper 2879, NASA (1989)

  20. Hill, P.G., Peterson, C.R.: Mechanics and Thermodynamics of Propulsion. Addison-Wesley Publishing Company, Reading (1992)

  21. Papadimitriou, D.I., Giannakoglou, K.C.: Aerodynamic shape optimization using first and second order adjoint and direct approaches. Arch. Comput. Methods Eng. 15(4), 447–488 (2008)

  22. Tian, Y., Liu, P., Feng, P.: Shock control bump parametric research on supercritical airfoil. Sci. China Technol. Sci. 54(11), 2935–2944 (2011)

    Article  Google Scholar 

  23. Mazaheri, K., Nejati, A., Kiani, K.C.: Application of the adjoint multi-point and the robust optimization of shock control bump for transonic aerofoils and wings. Eng. Optim. (2016). doi:10.1080/0305215X.2016.1139811

  24. Blazek, J.: Computational Fluid Dynamics: Principles and Applications. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  25. Ramezani, A., Mazaheri, K.: Multigrid convergence acceleration for implicit and explicit solution of Euler equations on unstructured grids. Int. Numer. Methods Fluids 62(9), 994–1012 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Nadarajah, S.K.: The discrete adjoint approach to aerodynamic shape optimization, Ph.D. Thesis, Stanford University (2003)

  27. Mazaheri, K., Nejati, A.: The multi-point optimization of shock control bump with constant-lift constraint enhanced with suction and blowing for a supercritical airfoil. Flow Turbul. Combust. 96(3), 639–666 (2016)

    Article  Google Scholar 

  28. Papadimitriou, D.I., Giannakoglou, K.C.: A continuous adjoint method with objective function derivatives based on boundary integrals for inviscid and viscous flows. Comput. Fluids 36(2), 325–341 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Khatibirad.

Additional information

Communicated by A. Hadjadj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazaheri, K., Khatibirad, S. Using a shock control bump to improve the performance of an axial compressor blade section. Shock Waves 27, 299–312 (2017). https://doi.org/10.1007/s00193-016-0672-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-016-0672-x

Keywords

Navigation