Skip to main content
Log in

Numerical study of micro-ramp vortex generator for supersonic ramp flow control at Mach 2.5

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

An implicit large eddy simulation, implemented using a fifth-order, bandwidth-optimized weighted essentially non-oscillatory scheme, was used to study the flow past a compression ramp at Mach 2.5 and \(\text {Re}_{\theta } = 5760\) with and without a micro-ramp vortex generator (MVG) upstream. The MVG serves as a passive flow control device. The results suggested that MVGs may distinctly reduce the separation zone at the ramp corner and lower the boundary layer shape factor. New findings regarding the MVG-ramp interacting flow included the surface pressure distribution, three-dimensional structures of the re-compression shock waves, surface separation topology, and a new secondary vortex system. The formation of the momentum deficit was studied in depth. A new mechanism was observed wherein a series of vortex rings originated from the MVG-generated high shear at the boundary of the momentum deficit zone. Vortex rings strongly interact with the shock-separated flow and play an important role in the separation zone reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

M :

Mach number

\(\text {Re}_{\theta }\) :

Reynolds number based on momentum thickness

c :

Micro-ramp vortex generator side length

h :

MVG height

\(\alpha \) :

MVG half angle

\(\beta \) :

MVG declining angle of the trailing edge

\(\delta \) :

Incompressible boundary-layer nominal thickness

\(\delta ^{*}\) :

Incompressible boundary-layer displacement thickness

\(\theta \) :

Incompressible boundary-layer momentum thickness

\(H_{\mathrm{i}}\) :

Incompressible boundary-layer shape factor \(\delta ^{*}/\theta \)

xyz :

Spanwise, normal and streamwise coordinate axes

uvw :

Spanwise, normal and streamwise velocities

\(p_{0}\) :

Pitot pressure

\(C_{\mathrm{Ptot}_{\mathrm{rc}} }\) :

Pitot pressure recovery coefficient

Pr:

Prandtl number

RANS:

Reynolds-averaged Navier–Stokes

LES:

Large eddy simulation

DNS:

Direct numerical simulation

WENO:

Weighted essentially non-oscillatory scheme

TVB:

Total variation bounded

SBLI:

Shock wave boundary layer interaction

VG:

Vortex generator

MVG:

Micro-ramp VG

SWBLI:

Shock-wave boundary layer interaction

w:

Wall

\(\infty \) :

Free stream

0:

Representing the location at the inlet if without special explanation

References

  1. Lin, J.C.: Review of research on low-profile vortex generators to control boundary-layer separation. Prog. Aerosp. Sci. 38(4–5), 389–420 (2002)

    Article  Google Scholar 

  2. Ashill, P.R., Fulker, J.L., Hackett, K.C.: A review of recent developments in flow control. Aeronaut. J. 109(1095), 205–232 (2005)

    Article  Google Scholar 

  3. Anderson, B.H., Tinapple, J., Surber, L.: Optimal control of shock wave turbulent boundary layer interaction using micro-array actuation. AIAA paper 2006–3197 (2006)

  4. Lu, F., Li, Q., Liu, C.: Micro vortex generators in high-speed flow. Prog. Aerosp. Sci. 53, 30–45 (2012)

    Article  Google Scholar 

  5. Holden, H.A., Babinsky, H.: Vortex generators near shock/boundary layer interactions. AIAA paper 2004-1242 (2004)

  6. Babinsky, H., Makinson, N.J., Morgan, C.E.: Micro-vortex generator flow control for supersonic engine inlets. AIAA paper 2007-521 (2007)

  7. Holden, H., Babinsky, H.: Effect of microvortex generators on separated normal shock/boundary layer interactions. J. Aircraft 44(1), 170–173 (2007)

    Article  Google Scholar 

  8. Babinsky, H., Li, Y., Ford, C.W.P.: Microramp control of supersonic oblique shock-wave/boundary-layer interactions. AIAA J. 47(3), 668–675 (2009)

    Article  Google Scholar 

  9. Saad, M.R., Zare-Behtash, H., Che-Idris, A., Kontis, K.: Micro-ramps for hypersonic flow control. Micromachines 3(2), 364–378 (2012)

    Article  Google Scholar 

  10. Estruch-Samper, D., Vanstone, L., Hillier, R., Ganapathisubramani, B.: Micro vortex generator control of axisymmetric high-speed laminar boundary layer separation. Shock Waves 25(5), 521–533 (2015)

    Article  Google Scholar 

  11. Ghosh, S., Choi J., Edwards, J. R.: RANS and hybrid LES/RANS simulations of the effects of micro vortex generators using immersed boundary methods. AIAA paper 2008-3728 (2008)

  12. Lee, S., Loth E., Wang, C., Kim, S.: LES of supersonic turbulent boundary layers with \(\mu \)VG’s. AIAA Paper 2007-3916 (2007)

  13. Lee, S., Loth, E.: Supersonic boundary layer interactions with various micro-vortex generator geometries. AIAA paper 2009-3712 (2009)

  14. John, B., Emerson, D.R., Gu, X.J.: Parallel Navier–Stokes simulations for high speed compressible flow past arbitrary geometries using FLASH. Comput. Fluids 110(30), 27–35 (2015)

    Article  Google Scholar 

  15. John, B., Emerson, D.R., Gu, X.J.: Parallel compressilbe viscous flow simulations using FLASH code: implementation for arbitrary 3D geometries. Procedia Eng. 61, 52–56 (2013)

    Article  Google Scholar 

  16. Zhang, B., Zhao, Q., Xiang, X., Xu, J.: An improved micro-vortex generator in supersonic flows. Aerosp. Sci. Technol. 47, 210–215 (2015)

    Article  Google Scholar 

  17. Dolling, D.S., Murthy, M.T.: Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield. AIAA J. 21(12), 1628–1634 (1983)

    Article  Google Scholar 

  18. Dolling, D.S.: High-speed turbulent separated flows: consistency of mathematic models and flow physics. AIAA J. 36(5), 725–732 (1998)

    Article  Google Scholar 

  19. Dolling, D.S.: Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39(8), 1517–1531 (2001)

    Article  Google Scholar 

  20. Settles, G.S., Dodson, L.J.: Supersonic and hypersonic shock/boundary layer interaction database. AIAA J. 32(7), 1377–1383 (1994)

    Article  Google Scholar 

  21. Dussauge, J.P., Dupont, P., Debieve, J.F.: Unsteadiness in shock wave boundary layer interaction with separation. Aerosp. Sci. Technol. 10(2), 85–91 (2006)

    Article  Google Scholar 

  22. Andreopoulos, Y., Agui, J.H., Briassulis, G.: Shock wave–turbulence interactions. Annu. Rev. Fluid Mech. 32, 309–345 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Loginov, M.S., Adams, N.A., Zheltovodov, A.A.: Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction. J. Fluid Mech. 565, 135–169 (2006)

    Article  MATH  Google Scholar 

  24. Wilcox, D.: Turbulence Modeling for CFD. DCW Industries Inc, La Cãnada, CA (1993)

    Google Scholar 

  25. Zheltovodov, A.A.: Advances and problems in modeling of shock wave turbulent boundary layer interactions. In: Proceedings of the International Conference on the Methods of Aerophysical Research, pp. 149–157. Institute of Theoretical and Applied Mechanics, Novosibirsk (2004)

  26. Rizzetta, D., Visbal, M., Datta, V.G.: Large eddy simulation of supersonic compression-ramp flow by high-order method. AIAA J. 39(12), 2283–2292 (2001)

    Article  Google Scholar 

  27. Kaenel, R.V., Kleiser, L., Adams, N.A., Vos, J.B.: Large-eddy simulation of shock–turbulence interaction. AIAA J. 42(12), 2516–2528 (2004)

    Article  Google Scholar 

  28. Adams, N.A.: Direct simulation of the turbulent boundary layer along a compression ramp at \(M = 3\) and \(Re_{\theta }=1685\). J. Fluid Mech. 420, 47–83 (2000)

    Article  MATH  Google Scholar 

  29. Wu, M., Martin, M.P.: Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J. 45(4), 879–889 (2007)

    Article  Google Scholar 

  30. Martín, M.P.: Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments. J. Fluid Mech. 570, 347–364 (2007)

    Article  MATH  Google Scholar 

  31. Ringuette, M., Wu, M., Martín, M.P.: Low Reynolds number effects in a Mach 3 shock/turbulent-boundary-layer interaction. AIAA J. 46(7), 1883–1886 (2008)

    Article  Google Scholar 

  32. Wu, M., Martín, M.P.: Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. J. Fluid Mech. 594, 71–83 (2008)

    Article  MATH  Google Scholar 

  33. Ringuette, M.J., Wu, M., Martín, M.P.: Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 59–69 (2008)

    Article  MATH  Google Scholar 

  34. Priebe, S., Wu, M., Martín, M.P.: Direct numerical simulation of a reflected-shock-wave/turbulent-boundary-layer interaction. AIAA J. 47(5), 1173–1185 (2009)

    Article  Google Scholar 

  35. Bookey, P., Wyckham, C., Smits, A.J.: Experimental investigations of Mach 3 shock-wave turbulent boundary layer interactions. AIAA paper 2005-4899 (2005)

  36. Cattafesta III, L.N., Sheplak, M.: Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247–272 (2011)

    Article  MATH  Google Scholar 

  37. Blinde, P.L., Humble, R.A., Van Oudheusden, B.W., Scarano, F.: Effects of micro-ramps on a shock wave/turbulent boundary layer interaction. Shock Waves 19(6), 507–520 (2009)

    Article  Google Scholar 

  38. Sun, Z., Schrijer, F.F.J., Scarano, F., Van Oudheusden, B.W.: The three dimensional flow organization past a micro-ramp in a supersonic boundary layer. Phys. Fluids 24(5), 055105-055105-22 (2012)

    Article  Google Scholar 

  39. König, B., Pätzold, M., Lutz, T., Krämer, E., Rosemann, H., Richter, K., Uhlemann, H.: Numerical and experimental validation of three dimensional shock control bumps. J. Aircraft 46(2), 675–682 (2009)

    Article  Google Scholar 

  40. Marxen, O., Rist, U.: Mean flow deformation in a laminar separation bubble: separation and stability characteristics. J. Fluid Mech. 660, 37–54 (2010)

    Article  MATH  Google Scholar 

  41. Smits, A.J., Dussauge, J.P.: Turbulent Shear Layers in Supersonic Flow, 2nd edn. Springer, New York (2006)

    Google Scholar 

  42. Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. J. Fluid Dyn. Res. 10, 199–228 (1992)

    Article  Google Scholar 

  43. Fureby, C., Grinstein, F.F.: Monotonically integrated large eddy simulation of free shear flows. AIAA J. 37(5), 544–556 (1999)

    Article  Google Scholar 

  44. Fureby, C., Alin, N., Wikstrom, N., Menon, S., Svanstedt, N., Persson, L.: Large eddy simulation of high-Reynolds-number and wall-bounded flows. AIAA J. 42(3), 457–468 (2004)

    Article  Google Scholar 

  45. Grinstein, F.F., Margolin, L.G., Rider, W.J.: Implicit Large Eddy Simulation. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  46. Visbal, M.R., Morgan, P.E., Rizzetta, D.P.: An implicit LES approach based on high-order compact differencing and filtering scheme. AIAA paper 2003-4098 (2003)

  47. Morgan, P.E., Rizzetta, D.P., Visbal, M.R.: Large-eddy simulation of separation control for flow over a wall-mounted hump. AIAA J. 45(11), 2643–2660 (2007)

    Article  Google Scholar 

  48. Rizzetta, D.P., Visbal, M.R., Gaitonde, D.V.: Large-eddy simulation of the supersonic compression-ramp flow by high-order method. AIAA J. 39(12), 2283–2292 (2001)

    Article  Google Scholar 

  49. Rizzetta, D.P., Visbal, M.R.: Application of large-eddy simulation to supersonic compression ramps. AIAA J. 40(8), 1574–1581 (2002)

    Article  Google Scholar 

  50. Garnier, E., Mossi, M., Sagaut, P., Comte, P., Deville, M.: On the use of shock-capturing schemes for large-eddy simulation. J. Comput. Phys. 153(2), 273–311 (1999)

    Article  MATH  Google Scholar 

  51. Ladeinde, F., Cai, X., Visbal, M.R., Gaitonde, D.V.: Turbulent spectra characteristics of high order schemes for direct and large eddy simulation. Appl. Numer. Math. 36(4), 447–474 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  52. Gao, R., Yu, J., Kong, W., Yan, C.: Evaluation of a WENO method in implicit large eddy simulation of circular cylinder flow. In: The 2nd International Conference on Computer and Automation Engineering (ICCAE), Singapore, vol. 5, pp. 308 - 312 (2010)

  53. Weirs, V.G., Candler, G.V.: Optimization of weighted ENO schemes for DNS of compressible turbulence. AIAA paper 97-1940 (1997)

  54. Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontnuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52(186), 411–435 (1989)

    MATH  Google Scholar 

  55. Li, Q., Liu, C.: Numerical investigations on the effects of the declining angle of the trailing-edge of MVG. AIAA paper 2010-714 (2010)

  56. Li, Q., Liu, C.: LES for supersonic ramp control flow using MVG at \(M=2.5\) and \({Re}_{\theta }=1440\). AIAA paper 2010-592 (2010)

  57. Liu, C., Chen, L.: Study of mechanism of ring-like vortex formation in late flow transition. AIAA paper 2010-1456 (2010)

  58. Rusanov, V.V.: A blunt body in a supersonic stream. Annu. Rev. Fluid Mech. 8, 377–404 (1976)

    Article  Google Scholar 

  59. Titchener, N., Babinsky, H.: A review of the use of vortex generators for mitigating shock-induced separation. Shock Waves 25(5), 473–494 (2015)

    Article  Google Scholar 

  60. Guarini, S.E., Moser, R.D., Shariff, K., Wray, A.: Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. J. Fluid Mech. 414(1), 1–33 (2000)

    Article  MATH  Google Scholar 

  61. Dong, Y., Yan, Y., Liu, C.: New visualization method for vortex structure in turbulence by lambda2 and vortex filaments. Appl. Math. Model. 40, 500–509 (2016)

    Article  MathSciNet  Google Scholar 

  62. Yan, Y., Li, Q., Liu, C., Pierce, A., Lu, F., Lu, P.: Numerical discovery and experimental confirmation of vortex ring generation by microramp vortex generator. Appl. Math. Model. 36(11), 5700–5708 (2012)

    Article  Google Scholar 

  63. Li, Q., Yan, Y., Lu, P., Pierce, A., Liu, C., Lu, F.: Numerical and experimental studies on the separation topology of the MVG controlled flow at \(M=2.5\). AIAA paper 2011-72 (2011)

  64. Lu, F.K.: Visualization of supersonic flow around a sharp-edged, sub-boundary-layer protuberance. J. Vis. 18(4), 619–629 (2015)

    Article  Google Scholar 

  65. Manisankar,C., Verma, S.B., Raju, C.: Shock-wave boundary-layer interaction control on a compression corner using mechanical vortex generators. In: Proceedings of 28th international symposium on shock waves, Manchester (2011). [Ed. by Kontis, K. Springer, New York, pp. 409-415. ISBN 978-3-642-25688-2 (2012)]

Download references

Acknowledgments

This work was supported by AFOSR Grant FA9550-08-1-0201 supervised by John Schmisseur and Opening Project of Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering. The authors are grateful to Texas Advantage Computing Center (TACC) for providing computational hours. The authors thank Frank Lu for providing some experimental snapshots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Liu.

Additional information

Communicated by A. Hadjadj and A. Higgins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Chen, L., Li, Q. et al. Numerical study of micro-ramp vortex generator for supersonic ramp flow control at Mach 2.5. Shock Waves 27, 79–96 (2017). https://doi.org/10.1007/s00193-016-0633-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-016-0633-4

Keywords

Navigation