Skip to main content
Log in

Analytical and computational studies on the vacuum performance of a chevron ejector

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The effects of chevrons on the performance of a supersonic vacuum ejector-diffuser system are investigated numerically and evaluated theoretically in this work. A three-dimensional geometrical domain is numerically solved using a fully implicit finite volume scheme based on the unsteady Reynolds stress model. A one-dimensional mathematical model provides a useful tool to reveal the steady flow physics inside the vacuum ejector-diffuser system. The effects of the chevron nozzle on the generation of recirculation regions and Reynolds stress behaviors are studied and compared with those of a conventional convergent nozzle. The present performance parameters obtained from the simulated results and the mathematical results are validated with existing experimental data and show good agreement. Primary results show that the duration of the transient period and the secondary chamber pressure at a dynamic equilibrium state depend strongly on the primary jet conditions, such as inlet pressure and primary nozzle shape. Complicated oscillatory flow, generated by the unsteady movement of recirculation, finally settles into a dynamic equilibrium state. As a vortex generator, the chevron demonstrated its strong entrainment capacity to accelerate the starting transient flows to a certain extent and reduce the dynamic equilibrium pressure of the secondary chamber significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area \((\hbox {m}^{2})\)

\(c_\mathrm{p}\) :

Constant pressure specific heat (J/kg K)

\(D_\mathrm{h}\) :

Hydraulic diameter (m)

E :

Specific total energy (J/kg)

f :

Friction factor

H :

Height of the nozzle throat (m)

L :

Length (m)

M :

Mach number

P :

Pressure (Pa)

\(\mathrm{Pr}_\mathrm{t}\) :

Turbulent Prandtl number

R :

Gas constant (J/kg K)

Re:

Reynolds number

Rm:

Entrainment ratio

t :

Time (s, ms)

T :

Temperature (K)

\(u_{i,j,k}\) :

Velocity components (m/s)

\(\overline{u_i } ,u_i^{\prime }\) :

Mean and fluctuating velocity components (m/s)

\(\overline{u_i^{\prime } u_j^{\prime } } \) :

Reynolds stress tensor

V :

Velocity (m/s)

xyz :

Cartesian coordinates

\(y^+\) :

Non-dimensional distance

\(\alpha \) :

Thermal conductivity (W/m K)

\(\varepsilon \) :

Roughness height (m)

\(\gamma \) :

Ratio of specific heats

\(\delta _{ij}\) :

Kronecker symbol

\(\delta \) :

Deflection angle (\(^{\circ }\))

\(\theta \) :

Shock angle (\(^{\circ }\))

\(\lambda \) :

Thickness of the chevrons (\(\lambda <\!<{H}\))

\(\dot{m}\) :

Mass flow rate (kg/s)

\(\mu \) :

Dynamic viscosity (Pa s)

\(\mu _{\mathrm{eff}}\) :

Effective viscosity (kg/m s)

\(\rho \) :

Density (\(\hbox {kg}/\hbox {m}^{3}\))

\(\tau _{ij}\) :

Stress tensor

\(\tau _{ij, \mathrm{eff}}\) :

Effective stress tensor

\(\psi _{1,2,3} \) :

Complementary coefficients

0:

Stagnation condition

1:

1st: primary stream

2:

2nd: secondary stream

atm:

Atmosphere

b:

Back pressure

c:

Cross section-c

D:

Diffuser section

e:

Exit of the vacuum ejector-diffuser system

ijk :

Unit vectors

m:

Cross section-m

M:

Mixing chamber

o:

Cross section-o

s:

Cross section-s, before the normal shock wave

t:

Primary flow nozzle throat

w:

Cross section-w, after the normal shock wave

CFD:

Computational fluid dynamics

DER:

Dynamic equilibrium region

HAT:

High altitude test

RANS:

Reynolds averaged Navier–Stokes

RSM:

Reynolds stress model

S–A:

Spalart–Allmaras Model

SFR:

Steady flow region

STR:

Starting transients region

References

  1. Sun, D.: Variable geometry ejectors and their applications in ejector refrigeration systems. Energy 21(10), 919–929 (1996)

    Article  Google Scholar 

  2. Huang, B.J., Petrenko, V.A., Chang, J.M., Lin, C.P., Hu, S.S.: A combined cycle refrigeration system using ejector-cooling as the bottom cycle. Int. J. Refrig. 24(5), 391–399 (2001)

    Article  Google Scholar 

  3. Blanco, J., Malato, S., Fernández-Ibañez, P., Alarco’n, D., Gernjak, W., Maldonado, M.I.: Review of feasible solar energy applications to water processes. Renew. Sustain. Energy Rev. 13(6), 1437–1445 (2009)

    Article  Google Scholar 

  4. Lee, J.H., Sameen, A., Kumar, V.S., Kim, H.D., Choi, B.G., Kim, K.H.: Studies on Ejector Systems for Hydrogen Fuel Cell. In: 41st Joint Propulsion Conference (2005)

  5. Sankaran, S., Satyanarayana, T.V.V., Annamalai, K., Visvanathan, K., Babu, V., Sundararajan, T.: CFD analysis for simulated altitude testing of rocket motors. Can. Aeronaut. Space J. 48(2), 153–162 (2002)

    Article  Google Scholar 

  6. Desevaux, P., Lanzetta, F.: Computational fluid dynamic modeling of pseudoshock inside a zero-secondary flow ejector. AIAA J. 42(7), 1480–1483 (2004)

    Article  Google Scholar 

  7. Kong, F.S., Kim, H.D., Jin, Y.Z., Setoguchi, T.: Computational analysis of mixing guide vane effects on performance of the supersonic ejector-diffuser system. Open J. Fluid Dyn. 2, 45–55 (2012)

    Article  Google Scholar 

  8. Östlund, J.: Flow processes in rocket engine nozzles with focus on flow, separation and side-loads. Licentiate Thesis TRITA-MEK 2002:09, Department of Mechanics, Royal Institute of Technology, Stockholm, Sweden (2002)

  9. Lijo, V., Kim, H.D., Rajesh, G., Setoguchi, T.: Numerical simulation of transient flows in a vacuum ejector-diffuser system. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 224(7), 777–786 (2010)

    Article  Google Scholar 

  10. Annamalai, K., Visvanathan, K., Sriramulu, V., Bhaskaran, K.A.: Evaluation of the performance of supersonic exhaust diffuser using scaled down models. Exp. Therm. Fluid Sci. 17(3), 217–229 (1998)

    Article  Google Scholar 

  11. Bartosiewicz, Y., Aidoun, Z., Desevaux, P., Mercadier, Y.: Numerical and experimental investigations on supersonic ejectors. Int. J. Heat Fluid Flow 26(1), 56–70 (2005)

    Article  Google Scholar 

  12. Schäfer, K., Zimmermann, H.: Simulation offlight conditions during lift off for rocket engine testing. In: AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA, 4001 (2004)

  13. Park, B.H., Lee, J.H., Yoon, W.: Studies on the starting transient of a straight cylindrical supersonic exhaust diffuser: Effects of diffuser length and pre-evacuation state. Int. J. Heat Fluid Flow 29(5), 1369–1379 (2008)

    Article  Google Scholar 

  14. Park, B.H., Lee, J.H., Yoon, W.: Fluid dynamics in starting and terminating transients of zero-secondary flow ejector. Int. J. Heat Fluid Flow 29(5), 327–339 (2008)

    Article  Google Scholar 

  15. Kim, H.D., Lee, J.S.: An experimental study of supersonic ejector for a vacuum pump. In: proceedings of the Korean Society of Mechanical Engineers, Annual Fall Meeting, B, 520–525 (1994)

  16. Mittal, A., Rajesh, G., Lijo, V., Kim, H.D.: Starting transients in vacuum ejector-diffuser system. J. Propuls. Power 30(5), 1213–1223 (2014)

    Article  Google Scholar 

  17. Kong, F.S., Jin, Y.Z., Setoguchi, T., Kim, H.D.: Numerical analysis of Chevron nozzle effects on performance of the supersonic ejector-diffuser system. J. Therm.Sci. 22(5), 459–466 (2013)

    Article  Google Scholar 

  18. Yang, X., Long, X., Yao, X.: Numerical investigation on the mixing process in a stream ejector with different nozzle structures. Int. J. Therm. Sci. 56, 95–106 (2012)

    Article  Google Scholar 

  19. Sobolev, A.V., Zapryagaev, V.I., Mal’Kov, V.M.: Improvement of gas-jet ejector discharge characteristics with heads, chevrons, and tubs. Thermophys. Aeromech. 14(2), 193–200 (2007)

    Article  Google Scholar 

  20. Blaisdell, G.A., Lyrintzi, A.S., Sullivan, J.P.: Preliminary design and computational analysis of an ejector nozzle with chevrons. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida (2011)

  21. Kong, F.S., Kim, H.D., Jin, Y.Z., Setoguchi, T.: Application of chevron nozzle to a supersonic ejector-diffuser system. Procedia Engineering 56, 193–200 (2013)

    Article  Google Scholar 

  22. Neumann, E.P., Lustwerk, F.: Supersonic diffuser for wind tunnels. J. Appl. Mech. 16(2), 195–202 (1949)

    Google Scholar 

  23. Keenan, J.H., Neumann, E.P.: A simple air ejector. J. Appl. Mech. ASME 9(2), 75–81 (1942)

    Google Scholar 

  24. Keenan, J.H., Neumann, E.P.: An investigation of ejector design by analysis and experiment. J. Appl. Mech. ASME 17, 299–309 (1950)

    Google Scholar 

  25. Dessouky, H.E., Ettouney, H., Alatiqi, I., Nuwaibit, G.A.: Evaluation of steam jet ejectors. Chem. Eng. Proces. 41(6), 551–561 (2002)

    Article  Google Scholar 

  26. Beithou, N., Aybar, H.S.: High-pressure steam-driven jet pump-part I: mathematical modeling. J. Eng. Gas Turbines Power 123(3), 693–700 (2001)

    Article  Google Scholar 

  27. Beithou, N., Aybar, H.S.: High-pressure steam-driven jet pump-part II: parametric analysis. J. Eng. Gas Turbines Power 123(3), 701–706 (2001)

    Article  Google Scholar 

  28. Huang, B.J., Chang, J.M., Wang, C.P., Petrenko, V.A.: A 1-d analysis of ejector performance. Int. J. Refrig. 22(5), 354–364 (1999)

    Article  Google Scholar 

  29. Zhu, Y., Cai, W., Wen, C., Li, Y.: Shock circle model for ejector performance evaluation. Energy Convers. Manag. 48(9), 2533–2541 (2007)

    Article  Google Scholar 

  30. Zhu, Y., Li, Y.: Novel ejector model for performance evaluation on both dry and wet vapors ejectors. Int. J. Refrig. 32(1), 21–31 (2009)

    Article  Google Scholar 

  31. Ansys Fluent 14.0: Users Guide, A users guide/manual for use with Ansys Fluent 14.0 Computational Fluid Dynamics software

  32. Lien, F.S., Leschziner, M.A.: Assessment of Turbulent Transport Models Including Non-Linear RNG Eddy-Viscosity Formulation and Second-Moment Closure. Comput. Fluids 23(8), 983–1004 (1994)

    Article  MATH  Google Scholar 

  33. Gibson, M.M., Launder, B.E.: Ground Effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86(03), 491–511 (1978)

  34. Fu, S., Launder, B.E., Leschziner, M.A.: Modeling Strongly Swirling Recirculating Jet Flow with Reynolds-Stress Transport Closures. In: Sixth Symposium on Turbulent Shear Flows. Toulouse, France (1987)

  35. Launder, B.E.: Second-moment closure and its use in modeling turbulent industrial flows. Int. J. Numer. Methods Fluids 9(8), 963–985 (1989)

    Article  MathSciNet  Google Scholar 

  36. Launder, B.E.: Second-Moment Closure: Present. and Future? Int. J. Heat Fluid Flow 10(4), 282–300 (1989)

    Article  Google Scholar 

  37. Sarkar, S., Balakrishnan, L.: Application of a Reynolds-Stress Turbulence Model to the Compressible Shear Layer. ICASE Report 90-18NASA CR 182002 (1990)

  38. Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3(2), 269–289 (1974)

    Article  MATH  Google Scholar 

  39. Chima, R.V., Liou, M.S.: Comparison of the AUSM+ and H-CUSP Schemes for Turbomachinery Applications. NASA TM-2003-212457 (2003)

  40. Barth, T.J., Jespersen, D.: The design and application of upwind schemes on unstructured meshes. Technical Report AIAA-89-0366. AIAA 27th Aerospace Sciences Meeting, Reno, Nevada (1989)

  41. Van Leer, B.: Toward the ultimate conservative difference scheme. IV. A Second Order Sequel to Godunov’s Method. J. Comput. Phys. 32(1), 101–136 (1979)

    Article  Google Scholar 

  42. Roache, P.J.: Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech. 29(1), 123–160 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the Advanced Research Center Program (NRF-2013R1A5A1073861) through the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) contracted through Advanced Space Propulsion Research Center at Seoul National University (Project Number: 0659-20150012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Kim.

Additional information

Communicated by K. Hannemann and A. Higgins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, F.S., Jin, Y.Z. & Kim, H.D. Analytical and computational studies on the vacuum performance of a chevron ejector. Shock Waves 26, 771–788 (2016). https://doi.org/10.1007/s00193-015-0618-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-015-0618-8

Keywords

Navigation