Skip to main content

Advertisement

Log in

Research on viscosity of metal at high pressure

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A new experimental technique, the flyer-impact method, is proposed in this article to investigate the viscosity coefficient of shocked metals. In this technique, a shock wave with a sinusoidal perturbation on the front is induced by the sinusoidal profile of the impact surface of the sample by use of a two-stage light-gas gun, and the oscillatory damping process of the perturbation amplitude is monitored by electric pins. The damping processes of aluminum at 78 and 101 GPa and iron at 159 and 103 GPa are obtained by this technique, which supplement the existing data by measuring the viscosity coefficient via a dynamic high-pressure method. Applying the formula of Miller and Ahrens to fit the experimental data, the shear viscosity coefficients of aluminum at 78 and 101 GPa are \(1350\,\pm \,500\) and \(1200\,\pm \,500~\hbox {Pa}\,\hbox {s}\), respectively, and those of iron at 159 and 103 GPa are \(1150\,\pm \,1000\) and \(4800\,\pm \,1000~\hbox {Pa}\,\hbox {s}\), respectively. The values measured by the flyer-impact method, approximately \(10^{3}~\hbox {Pa}\, \hbox {s}\), are consistent with those measured by Sakharov’s method, while still greatly differing from those measured by static high-pressure methods. In dynamic high-pressure experiments, the shear viscosity is related to dislocation motion in the solid material, while that in static high-pressure experiments is related to the diffusion motion of atoms or molecules in liquids. Therefore, there are different physical meanings of shear viscosity in dynamic and static high-pressure experiments, and there is no comparability among these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Miller, G.H., Ahrens, T.J.: Shock–Wave viscosity measurement. Rev. Mod. Phys. 63, 919–948 (1991)

    Article  Google Scholar 

  2. Xie, H.: Introduction of Materials Science of the Earth’s Interior, pp. 277–281. Science Press, Beijing (1997) (in Chinese)

  3. Glatzmaiers, G.A., Roberts, P.H.: A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 203–209 (1995)

    Article  Google Scholar 

  4. Kuang, W., Bloxham, J.: An earth-like numerical dynamo model. Nature 389, 371–374 (1997)

    Article  Google Scholar 

  5. Rigden, S.M., Ahrens, T.J., Stolper, E.M.: Shock compression of molten silicate: results for a model basaltic composition. J. Geophys. Res. 93(B1), 367–382 (1988)

    Article  Google Scholar 

  6. Melosh, H.J.: Giant impacts and the thermal state of the early Earth. In: Newsom, H.E., Jones, J.H. (eds.) Origin of the Earth, pp. 69–83. Oxford University Press, Oxford (1990)

    Google Scholar 

  7. Miller, G.H., Stolper, E.M., Ahrens, T.J.: The equation of state of a Molten Komatiite: 2. Application to Komatiite petrogenesis and the Hadean Mantle. J. Geophys. Res. 96, 11849–11864 (1991)

    Article  Google Scholar 

  8. Alfè, D., Gillan, M.J.: First-principles calculation of transport coefficients. Phys. Rev. Lett. 81, 5161–5164 (1998)

    Article  Google Scholar 

  9. Alfè, D., Kresse, G., Gillan, M.J.: Structure and dynamics of liquid iron under Earth’s core conditions. Phys. Rev. B 61, 132–142 (2000)

    Article  Google Scholar 

  10. Rutter, M.D., Secco, R.A., Uchida, T., Hongjian, L., Wang, Y., Rivers, M.L., Sutton, S.R.: Towards evaluating the viscosity of the earth’s outer core: an experimental high pressure study of liquid Fe-S(8.5 wt% S). Geophys. Rev. Lett. 29, 58.1–58.4 (2002)

    Article  Google Scholar 

  11. Terasaki, H., Kato, T., Urakawa, S., Funakoshi, K., Suzuki, A., Okada, T., Maeda, M., Sato, J., Kubo, T., Kasai, S.: The effect of temperature, pressure and sulfur content on viscosity of the Fe–S melt. Earth Planet. Sci. Lett. 190, 93–101 (2001)

    Article  Google Scholar 

  12. LeBlanc, G.E., Secco, R.A.: Viscosity of an Fe–S liquid up to \(1300^{\circ }\text{ C }\) and 5 GPa. Geophys. Rev. Lett. 23, 213–216 (1996)

    Article  Google Scholar 

  13. Dobson, D.P., Crichton, W.A., Vocadlo, L., Jones, A.P., Wang, Y., Uchida, T., Rivers, M., Sutton, S., Brodholt, J.P.: In situ measurement of viscosity of liquid in the Fe–FeS system at high pressures and temperatures. Am. Mineral. 85, 1838–1842 (2000)

    Article  Google Scholar 

  14. Urakawa, S., Terasaki, H., Funakoshi, K., Kato, T., Suzuki, A.: Radiographic study on the viscosity of the Fe–FeS melts at the pressure of 5 to 7 GPa. Am. Mineral. 86, 578–582 (2001)

    Article  Google Scholar 

  15. Rutter, M.D., Secco, R.A., Liu, H., Uchida, T., Rivers, M.L., Sutton, S.R., Wang, Y.: Viscosity of liquid Fe at high pressure. Phys. Rev. B 66, 060102.1–060102.4 (2002)

    Article  Google Scholar 

  16. Sakharov, A.D., Zaidel’, R.M., Mineev, V.N., Oleinik, A.G.: Experimental investigation of the stability of shock waves and the mechanical properties of substances at high pressures and temperatures. Sov. Phys. Dokl. 9, 1091 (1965)

    Google Scholar 

  17. Zaidel, R.M.: Development of perturbations in plane shock waves. J. Appl. Mech. Tech. Phys. USSR 8, 20–25 (1967)

    Article  Google Scholar 

  18. Mineev, V.N., Mineev, A.V.: Viscosity of metals under shock-loading conditions. J. Phys. IV Fr. C3, 583–585 (1997)

    Google Scholar 

  19. Mineev, V.N., Savinov, E.V.: Viscosity and melting point of aluminum, lead and sodium chloride subjected to shock compression. Sov. Phys. JETP 25, 411–416 (1967)

    Google Scholar 

  20. Mineev, V.N., Zaidel, R.M.: The viscosity of water and mercury under shock loading. Sov. Phys. JETP 27, 874–878 (1968)

    Google Scholar 

  21. Mineev, V.N., Funtikov, A.I.: Viscosity measurements in liquid iron and iron sulfides at high pressures and the calculation of the Earth’s core viscosity. Phys. Solid Earth 41, 539–554 (2005)

    Google Scholar 

  22. Mineev, V.N., Funtikov, A.I.: Measurements of the viscosity of iron and uranium under shock compression. High Temp. 44, 941–949 (2006)

    Article  Google Scholar 

  23. Mineev, V.N., Funtikov, A.I.: Viscosity Measurements on metal melts at high pressure and viscosity calculations for the Earth’s core. Physics-Uspekhi 47, 671–686 (2004)

    Article  Google Scholar 

  24. Mineev, V.N., Funtikov, A.I.: Measurements of the viscosity of water under shock compression. High Temp. 43, 141–150 (2005)

    Article  Google Scholar 

  25. Willians, Q., Jeanloz, R., Bass, J., Svendsen, B., Ahrens, T.J.: The melting curve of iron to 250 GPa: a constraint on temperature at Earth’s center. Science 236, 181–182 (1987)

    Article  Google Scholar 

  26. Boehler, R.: Temperature in the Earth’s core from melting point measured of iron at high static pressures. Nature 363, 534–536 (1993)

    Article  Google Scholar 

  27. Yoo, C.S., Akella, J., Campbell, A.J., Mao, H.K., Hemley, R.J.: Phase diagram of iron by in situ X-ray diffraction: implications for Earth’s core. Science 270, 1473–1474 (1995)

    Article  Google Scholar 

  28. Shen, G.Y., Mao, H.K., Hemley, R.J., Duffy, T.S., Rivers, M.L.: Melting and crystal structure of iron at high pressures and temperatures. Geophys. Res. Lett. 25, 373–376 (1998)

    Article  Google Scholar 

  29. Ma, Y.Z., Somayazulu, M., Shen, G., Mao, H.K., Shu, J., Hemley, R.J.: In situ X-ray diffraction studies of iron to Earth-core conditions. Phys. Earth Planet. Inter. 143–144, 455–467 (2004)

  30. Al’tshuler, L.V., Kormer, S.B., Brazhnik, M.I., Vladimirov, L.A., Speranskaya, M.P., Funtikov, A.I.: The isentropic compressibility of aluminum, copper, lead and iron at high pressure. Sov Phys. JETP 11, 766–775 (1960)

    Google Scholar 

  31. Brown, J.M., McQueen, R.G.: Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa. J. Geophys. Res. Solid Earth. 91, 7485–7494 (1986)

    Article  Google Scholar 

  32. Nguyen, J.H., Holmes, N.C.: Melting of iron at the physical conditions of the Earth’s core. Nature 427, 339–342 (2004)

    Article  Google Scholar 

  33. Zhang, Y., Guo, G., Nie, G.: A molecular dynamics study of bulk and shear viscosity of liquid iron using embedded-atom potential. Phys. Chem. Mineral. 27, 164–169 (2000)

    Article  Google Scholar 

  34. Laio, A., Bernard, S., Chiarotti, G.L., Scandolo, S., Tosatti, E.: Physics of iron at Earth’s core conditions. Science 287, 1027–1030 (2000)

    Article  Google Scholar 

  35. Vočadlo, L., Alfè, D., Price, G.D., Gillan, M.J.: First-principles calculations on the diffusivity and viscosity of liquid Fs–S at experimentally accessible conditions. Phys. Phys. Earth. Planet. Inter. 120, 145–152 (2000)

    Article  Google Scholar 

  36. Zhang, Y., Guo, G.: Molecular dynamics calculation of the bulk viscosity of liquid iron–nickel alloy and the mechanisms for the bulk attenuation of seismic waves in the Earth’s outer core. Phys. Earth. Planet. Inter. 122, 289–298 (2000)

    Article  Google Scholar 

  37. Belonoshko, A.B., Ahuja, R., Johansson, B.: Quasi-Ab initio molecular dynamic study of Fe melting. Phys. Rev. Lett. 84, 3638–3641 (2000)

    Article  Google Scholar 

  38. Ogorodnikov, V.A., Tyun’kin, E.S., Ivanov, A.G.: Strength and viscosity of metals in a wide range of strain rate variation. J. Appl. Mech. Tech. Phys. 36, 438–443 (1995)

    Article  Google Scholar 

  39. Hoover, W.G., Evans, D.J., Hickman, R.B., Ladd, A.J., Ashurst, W.T., Moran, B.: Lennard–Jones triple-point bulk and shear viscosities. Green–Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular dynamics. Phys. Rev. A 22, 1690–1697 (1980)

    Article  Google Scholar 

  40. Tan, H.: Introduction to Experimental Shock–Wave Physics. National Defense Industry Press, Beijing (2007) (in Chinese)

Download references

Acknowledgments

The authors thank Y.H. Li, and X.D. Xue for their help in gas-gun operation. The authors are grateful for the support from the National Science Foundation of China under Contract No. 10974160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Liu.

Additional information

Communicated by N. Thadhani and A. Higgins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, F., Ma, X. et al. Research on viscosity of metal at high pressure. Shock Waves 26, 759–770 (2016). https://doi.org/10.1007/s00193-015-0604-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-015-0604-1

Keywords

Navigation