Skip to main content
Log in

Visualization of the structure of an incident shock wave/turbulent boundary layer interaction

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

An experimental study of shock wave/turbulent boundary layer interaction at Mach 3 is performed. A newly-developed nano-tracer planar laser scattering technique is used to reveal three-dimensional instantaneous structures of the flow. Large-scale structures within the incoming turbulent boundary layer and the unsteady motion of the separation bubble and the reflected shock are visualized in the streamwise wall-normal plane. The temporal evolution of the flow structures as well as the interaction between the large-scale structures and the reflected shock are analyzed using two successive images. Instantaneous structures in streamwise-spanwise planes at different heights are also presented, thus revealing highly three-dimensional nature of the interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dolling, D.S.: Fifty years of shock-wave boundary layer interaction research: What Next? AIAA J. 39, 1517–1531 (2001)

    Article  Google Scholar 

  2. Smits, A.J., Dussauge, J.P.: Turbulent shear layers in supersonic flow, 2nd edn. Springer, New York (2006)

    Google Scholar 

  3. Dupont, P., Haddad, C., Debiève, J.-F.: Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255–277 (2006)

    Article  MATH  Google Scholar 

  4. Chapman, D.R., Kuhen, D.M., Larson, H.K.: Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. NACA TN-3869 (1957)

  5. Verma, S.B., Koppenwallner, G.: Detection of shock motion using laser schlieren system in a hypersonic SWBLI flowfield. AIAA Paper 2001–1756 (2001)

  6. Verma, S.B.: Detection of fluctuating density gradient flow field in shock wave boundary layer interactions using laser Schlieren system. Exp. Fluids 32, 527–531 (2002)

    Article  Google Scholar 

  7. Debiéve, J., Ardissone, J., Dussauge, J.: Shock motion and state of turbulence in a perturbed supersonic flow around a sphere. J Turb 4, 1–15 (2003)

    Article  Google Scholar 

  8. Kastengren, A.L., Dutton, J.C., Elliott, G.S.: A method for measuring recompression shock unsteadiness applied to two supersonic wakes. Exp. Fluids 39, 140–151 (2005)

    Article  Google Scholar 

  9. Souverein, L.J., Debieve, J.F.: Effect of air jet vortex generators on a shock wave boundary layer interaction. Exp. Fluids 49, 1053–1064 (2010)

    Article  Google Scholar 

  10. Humble, R.A., Scarano, F., van Oudheusden, B.W.: Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction. Exp. Fluids 43, 173–183 (2007)

    Article  Google Scholar 

  11. Clemens, N., Mungal, M.: A planar Mie scattering technique for visualizing supersonic mixing flows. Exp. Fluids 11, 175–185 (1991)

    Google Scholar 

  12. Clemens, N., Mungal, M.: Large-scale structure and entrainment in the supersonic mixing layer. J. Fluid Mech. 284, 171–216 (1995)

    Article  Google Scholar 

  13. Smith, K.M., Dutton, J.C.: Investigation of large-scale structures in supersonic planar base flows. AIAA J. 34, 1146–1152 (1996)

    Article  Google Scholar 

  14. Bourdon, C.J., Dutton, J.C.: Planar visualizations of large-scale turbulent structures in axisymmetric supersonic separated flows. Phys. Fluids 11, 201–213 (1999)

    Article  MATH  Google Scholar 

  15. Kastengren, A.L., Dutton, J.C.: Wake topology in a three-dimensional supersonic base flow. AIAA paper 2004–2340 (2004)

  16. Smith, M.W., Smits, A.J.: Visualization of the structure of supersonic turbulent boundary layers. Exp. Fluids 18, 288–302 (1995)

    Google Scholar 

  17. Chan, S.C.: Planar laser scattering imaging of shock wave turbulent boundary layer interactions. M.S. Thesis, Dept. of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, USA (1996)

  18. Beresh, S.J., Clemens, N.T., Dolling, D.S., Comninos, M.: Investigation of the causes of large-scale unsteadiness of shock-induccd separated flow using planar laser imaging. AIAA Paper 97–0064, (1997)

  19. Ganapathisubramani, B., Clemens, N.T., Dolling, D.S.: Planar imaging measurements to study the effect of spanwise structure of upstream turbulent boundary layer on shock induced separation. AIAA Paper 2006–324 (2006)

  20. Wu, P., Miles, R.B.: MHz rate visualization of separation shock wave structure. AIAA Paper 2000–0647 (2000)

  21. Wu, M., Martin, M.P.: Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. J. Fluid Mech. 594, 71–83 (2008)

    Article  MATH  Google Scholar 

  22. Dussauge, J.P., Dupont, P., Debiève, J.F.: Unsteadiness in shock wave boundary layer interactions with separation. Aero. Sci. Technol. 10, 85–91 (2006)

    Article  Google Scholar 

  23. Zhao, Y.X., Yi, S.H., He, L., Cheng, Z.Y., Tian, L.F.: The experimental study of interaction between shock wave and turbulence. Chinese Sci. Bull. 52, 1297–1301 (2007)

    Article  Google Scholar 

  24. Zhao, Y.X., Yi, S.H., Tian, L.F., He, L., Cheng, Z.Y.: The fractal measurement of experimental images of supersonic turbulent mixing layer. Sci. China Ser. G: Phys. Mech. Astron. 51, 1134–1143 (2008)

    Article  Google Scholar 

  25. He, L., Yi, S.H., Zhao, Y.X., Tian, L.F., Chen, Z.: Visualization of coherent structures in a supersonic flat-plate boundary layer. Chinese Sci. Bull. 56, 489–494 (2011)

    Article  Google Scholar 

  26. He, L., Yi, S.H., Zhao, Y.X., Tian, L.F., Chen, Z.: Experimental study of a supersonic turbulent boundary layer using PIV. Sci. China, Ser. G: Phys. Mech. Astron. 54(9), 1702–1709 (2011)

    Article  Google Scholar 

  27. Beresh, S.J., Clemens, N.T., Dolling, D.S.: Relationship between upstream turbulent boundary layer velocity fluctuations and separation shock unsteadiness. AIAA J. 40(12), 2412–2422 (2002)

    Article  Google Scholar 

  28. Beresh, S.J., Clemens, N.T., Dolling, D.S.: The relationship between upstream turbulent boundary layer velocity fluctuations and separation shock unsteadiness. AIAA Paper 99–0295 (1999)

  29. Ganapathisubramani, B., Clemens, N.T., Dolling, D.S.: Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369–394 (2007)

  30. Adrian, R.J., Meinhart, C.D., Tomkins, C.D.: Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 1–54 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Basic Research Program of China (No. 2009CB724100) and the National Natural Science Foundation of China (Grant No. 11172326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. He.

Additional information

Communicated by H. Olivier and E. Timofeev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Yi, S., Chen, Z. et al. Visualization of the structure of an incident shock wave/turbulent boundary layer interaction. Shock Waves 24, 583–592 (2014). https://doi.org/10.1007/s00193-014-0530-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-014-0530-7

Keywords

Navigation