Skip to main content
Log in

Shock propagation in regular wetted arrays of fibers

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

We present results of shock propagation in a wetted foam modeled as a regular staggered row lattice of parallel cylinders in two-dimensions immersed in a background of different density. Both media are perfect mono-atomic gases. We show that shock velocity increases due to the heterogeneity of wetted foams in comparison to the velocity of shock in a homogeneous medium with the same average density. The post-shock medium is characterized by turbulence and multiple vortices. Destructive or constructive interactions between vortices appear in the downstream fluid depending on the fiber alignment. We show that the shock velocity increase is related to the kinetic energy stored in the downstream fluid in the turbulence and the vortices. A turbulent model is used to analytically relate the turbulent kinetic energy to the shock velocity increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Canaud, B., Garaude, F., Ballereau, P., Bourgade, J.L., Clique, C., Dureau, D., Houry, M., Jaouen, S., Jourdren, H., Lecler, N., et al.: High-gain direct-drive inertial confinement fusion for the Laser Mégajoule: recent progress. Plasma Phys. Control. Fusion 49, B601–B610 (2007)

    Article  Google Scholar 

  2. Canaud, B., Garaude, F., Clique, C., Lecler, N., Masson, A., Quach, R., Van der Vliet, J.: High-gain direct-drive laser fusion with indirect drive beam layout of Laser Mégajoule. Nucl. Fusion 47, 1652–1655 (2007)

    Article  Google Scholar 

  3. Canaud, B., Fortin, X., Garaude, F., Meyer, C., Philippe, F.: Progress in direct-drive fusion studies for the Laser Mégajoule. Las. Part. Beam 22, 109–114 (2004)

    Google Scholar 

  4. McKenty, P.W., Goncharov, V.N., Town, R., Skupsky, S., Betti, R.: Analysis of a direct-drive ignition capsule designed for the National Ignition Facility. Phys. Plasmas 8, 2315–2321 (2001)

    Article  Google Scholar 

  5. Sacks, R., Darling, D.: Direct drive cryogenic ICF capsules employing DT wetted foam. Nucl. Fusion 27, 447–452 (1987)

    Article  Google Scholar 

  6. Bodner, S.E., Colombant, D.G., Gardner, J.H., Lehmberg, R.H., Obenschain, S.P., Phillips, L., Schmitt, A.J., Sethian, J.D., McCrory, R.L., Seka, W., et al.: Direct-drive fusion: status and prospects. Phys. Plasmas 5, 1901–1918 (1998)

    Article  Google Scholar 

  7. Schmitt, A.J., Colombant, D.G., Velikovich, A.L., Zalesak, S.T., Gardner, J.H., Fyfe, D.E., Metzler, N.: Large-scale high-resolution simulations of high gain direct-direct inertial confinement fusion targets. Phys. Plasmas 11, 2716–2722 (2004)

    Article  Google Scholar 

  8. Collins, T.J.B., Marozas, J., Betti, R., Harding, D., McKenty, P.W., Radha, P.B., Skupsky, S., Goncharov, V.N., Knauer, J.P., McCrory, R.L.: One-megajoule, wetted-foam target-design performance for the National Ignition Facility. Phys. Plasmas 14, 056308–056313 (2007)

    Article  Google Scholar 

  9. Hallo, L., Olazabal-Loume, M., Ribeyre, X., Drean, V., Schurtz, G., Feugeas, J., Breil, J., Nicolai, P., Maire, P.: Hydrodynamic and symmetry safety factors of HIPER’s targets. Plasma Phys. Control. Fusion 51, 014001–014011 (2009)

    Article  Google Scholar 

  10. Bodner, S.E., Colombant, D.G., Schmitt, A.J., Gardner, J.H., Lehmberg, R.H., Obenschain, S.P.: Overview of new high gain target design for a laser fusion power plant. Fusion Eng. Design 60, 93–98 (2002)

    Article  Google Scholar 

  11. Canaud, B., Fortin, X., Garaude, F., Meyer, C., Philippe, F., Temporal, M., Atzeni, S., Schiavi, A.: High gain direct-drive target design for the Laser Megajoule. Nucl. Fusion 44, 1118–1129 (2004)

    Article  Google Scholar 

  12. Wouchuk, J.G., Ruiz, Huete, de Lira, C., Velikovich, A.L.: Analytical linear theory for the interaction of a planar shock wave with an isotropic turbulent vorticity field. Phys. Rev. E 79, 066315–35 (2009)

    Article  MathSciNet  Google Scholar 

  13. Ruiz, Huete, de Lira, C., Velikovich, A.L., Wouchuk, J.G.: Analytical linear theory for the interaction of a planar shock wave with a two- or three-dimensional random isotropic density field. Phys. Rev. E 83, 056320–31 (2011)

    Article  Google Scholar 

  14. Ruiz, Huete, de Lira, C., Wouchuk, J.G., Canaud, B., Velikovich, A.L.: Analytical linear theory for the shock and re-shock of isotropic density inhomogeneities. J. Fluid. Mech. 700, 214–245 (2012)

    Article  Google Scholar 

  15. Kotelnikov, A.D., Montgomery, D.C.: Shock induced turbulence in composite materials at moderate Reynolds numbers. Phys. Fluids 10, 2037–2054 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Poludnenko, A.Y., Frank, A., Blackman, E.G.: Hydrodynamic interaction of strong shocks with inhomogeneous media. I: adiabatic case. Astrophys. J. 576, 832–848 (2002)

    Article  Google Scholar 

  17. Hazak, G., Velikovich, A.L., Gardner, J.H., Dahlburg, J.P.: Shock propagation in a low-density foam filled with fluid. Phys. Plasmas 5, 4357–4365 (1998)

    Article  Google Scholar 

  18. Philippe, F., Canaud, B., Fortin, X., Garaude, F., Jourdren, H.: Effect of microstructure on shock propagation in foams. Las. Part. Beams 22, 171–174 (2004)

    Google Scholar 

  19. Collins, T.J.B., Poludnenko, A., Cunningham, A., Frank, A.: Shock propagation in deuterium-tritium-saturated foam. Phys. Plasmas 12, 062705–12 (2005)

    Article  Google Scholar 

  20. Velikovich, A.L., Ruiz, Huete, de Lira, C., Wouchuk, J.G.: Effect of shock-generated turbulence on the Hugoniot jump conditions. Phys. Rev. E 85, 016301–12 (2012)

    Article  Google Scholar 

  21. Poludnenko, A.Y., Dannenberg, K.K., Drake, R.P., Frank, A., Knauer, J., Meyerhofer, D.D., Furnish, M., Asay, J.R., Mitran, S.: A laboratory investigation of supersonic clumpy flows: experimental design and theoretical analysis. Astrophys. J. 604, 213–221 (2004)

  22. Elbaz, D., Dias, F., Canaud, B., Ballereau, P.: Modified shock velocity in heterogeneous wetted foams in the strong shock limit. Phys. Plasmas 17, 012702–6 (2010)

    Article  Google Scholar 

  23. Haas, J.F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid. Mech 181, 41–76 (1987)

    Google Scholar 

  24. Jacobs, J.W.: The dynamics of shock accelerated light and heavy gas cylinders. Phys. Fluids A 5, 2239–2247 (1993)

    Article  Google Scholar 

  25. Layes, G., Jourdan, G., Houas, L.: Distortion of a Spherical Gaseous Interface Accelerated by a Plane Shock Wave. Phys. Rev. Lett. 91, 17–21 (2003)

    Article  Google Scholar 

  26. Ranjan, D., Niederhaus, J.H.J., Oakley, J.G., Anderson, M.H., Bonazza, R., Greenough, J.A.: Shock-bubble interactions : Features of divergent shock-refraction geometry observed in experiments and simulations. Phys. Fluids 20, 036101–20 (2008)

    Article  Google Scholar 

  27. Jahn, R.G.: The refraction of shock waves at a gaseous interface. J. Fluid Mech. 1, 457–489 (1956)

    Article  Google Scholar 

  28. Picone, J.M., Boris, J.P.: Vorticity generation by shock propagation through bubbles in a gas. J. Fluid Mech. 189, 23–51 (1988)

    Article  Google Scholar 

  29. Henderson, L.F.: The refraction of a plane shock wave at a gas interface. J. Fluid Mech. 26, 607–637 (1966)

    Article  Google Scholar 

  30. Abd-El-Fattah, A.M., Henderson, L.F.: Shock waves at a fast-slow gas interface. J. Fluid Mech. 86, 15–32 (1978)

    Article  Google Scholar 

  31. Abd-El-Fattah, A.M., Henderson, L.F.: Shock waves at a slow-fast gas interface. J. Fluid Mech. 89, 79–95 (1978)

    Article  Google Scholar 

  32. Henderson, L.F., Collela, P., Puckett, E.G.: On the refraction of shock waves at a slow-fast gas interface. J. Fluid Mech. 224, 1–27 (1991)

    Article  Google Scholar 

  33. Samtaney, R., Zabusky, N.J.: Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws. J. Fluid Mech. 269, 45–78 (1994)

    Article  Google Scholar 

  34. Samtaney, R., Ray, J., Zabusky, N.J.: Baroclinic circulation generation on shock accelerated slow/fast gas interface. Phys. Fluids 10, 1217–1230 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Henderson, L.F.: On the refraction of shock waves. J. Fluid Mech. 198, 365–386 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Henderson, L.F., Macpherson, A.K.: On the irregular refraction of a plane shock wave at a Mach number interface. J. Fluid Mech. 32, 185–202 (1968)

    Article  Google Scholar 

  37. Saurel, R., Chinnayya, A., Renaud, F.: Thermodynamic analysis and numerical resolution of a turbulent-fully ionized plasma flow model. Shock Waves 12, 283–297 (2003)

    Article  Google Scholar 

  38. Piron, R., Ballereau, P., Canaud, B.: Shock propagation along a two-layers interface in confined geometry. Eur. J. Mech. B Fluids 28, 613–618 (2009)

    Article  MATH  Google Scholar 

  39. Elbaz, D., Jourdan, G., Houas, L., Jaouen, S., Ballereau, P., Dias, F., Canaud, B.: Shock velocity increase due to a heterogeneity produced by a two-gas layer. Phys. Rev. E 85, 066307–5 (2012)

    Article  Google Scholar 

  40. Jourdren, H.: HERA: a hydrodynamic AMR platform for multi-Physics simulations. Lectures Notes in Computational Science and Engineering, 41, pp. 283–294. Springer, Berlin (2005)

  41. Velikovich, A.L., Wouchuk, J.G., de Lira, C., Huete Ruiz, C., Metzler, N., Zalesak, S., Schmitt, A.J.: Shock front distortion and Richtmyer-Meshkov-type growth caused by a small preshock nonuniformity. Phys. Plasmas 14, 072706–072723 (2007)

    Google Scholar 

Download references

Acknowledgments

B. Canaud would like to thank C. Cornet for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Canaud.

Additional information

Communicated by A. Hadjadj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elbaz, D., Canaud, B., Ballereau, P. et al. Shock propagation in regular wetted arrays of fibers. Shock Waves 23, 81–89 (2013). https://doi.org/10.1007/s00193-012-0424-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-012-0424-5

Keywords

Navigation