Skip to main content

Advertisement

Log in

A new degree-2190 (10 km resolution) gravity field model for Antarctica developed from GRACE, GOCE and Bedmap2 data

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The current high-degree global geopotential models EGM2008 and EIGEN-6C4 resolve gravity field structures to \(\sim \)10 km spatial scales over most parts of the of Earth’s surface. However, a notable exception is continental Antarctica, where the gravity information in these and other recent models is based on satellite gravimetry observations only, and thus limited to about \(\sim \)80–120 km spatial scales. Here, we present a new degree-2190 global gravity model (GGM) that for the first time improves the spatial resolution of the gravity field over the whole of continental Antarctica to \(\sim \)10 km spatial scales. The new model called SatGravRET2014 is a combination of recent Gravity Recovery and Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite gravimetry with gravitational signals derived from the 2013 Bedmap2 topography/ice thickness/bedrock model with gravity forward modelling in ellipsoidal approximation. Bedmap2 is a significantly improved description of the topographic mass distribution over the Antarctic region based on a multitude of topographic surveys, and a well-suited source for modelling short-scale gravity signals as we show in our study. We describe the development of SatGravRET2014 which entirely relies on spherical harmonic modelling techniques. Details are provided on the least-squares combination procedures and on the conversion of topography to implied gravitational potential. The main outcome of our work is the SatGravRET2014 spherical harmonic series expansion to degree 2190, and derived high-resolution grids of 3D-synthesized gravity and quasigeoid effects over the whole of Antarctica. For validation, six data sets from the IAG Subcommission 2.4f “Gravity and Geoid in Antarctica” (AntGG) database were used comprising a total of 1,092,981 airborne gravimetric observations. All subsets consistently show that the Bedmap2-based short-scale gravity modelling improves the agreement over satellite-only data considerably (improvement rates ranging between 9 and 75 % with standard deviations from residuals between SatGravRET2014 and AntGG gravity ranging between 8 and 25 mGal). For comparison purposes, a degree-2190 GGM was generated based on the year-2001 Bedmap1 (using the ETOPO1 topography) instead of 2013 Bedmap2 topography product. Comparison of both GGMs against AntGG consistently reveals a closer fit over all test areas when Bedmap2 is used. This experiment provides evidence for clear improvements in Bedmap2 topographic information over Bedmap1 at spatial scales of \(\sim \)80–10 km, obtained from independent gravity data used as validation tool. As a general conclusion, our modelling effort fills—in approximation—some gaps in short-scale gravity knowledge over Antarctica and demonstrates the value of the Bedmap2 topography data for short-scale gravity refinement in GGMs. SatGravRET2014 can be used, e.g. as a reference model for future gravity modelling efforts over Antarctica, e.g. as foundation for a combination with the AntGG data set to obtain further improved gravity information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. In: NOAA Technical Memorandum NESDIS NGDC-24, p 19

  • Balmino G, Vales N, Bonvalot S, Briais A (2012) Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. J Geod 86(7):499–520. doi:10.1007/s00190-011-0533-4

    Article  Google Scholar 

  • Bamber JL, Griggs JA, Hurkmans RT et al (2013) A new bed elevation data set for Greenland. Cryosphere 7:499–510

    Article  Google Scholar 

  • Becker JJ, Sandwell DT, Smith WHF et al (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geod 32(4):355–371

    Article  Google Scholar 

  • Bell RE, Childers VA, Arko RA, Blankenship DD, Brozena JM (1999) Airborne gravity and precise positioning for geologic applications. J Geophys Res 104(B7):15281–15292. doi:10.1029/1999JB900122

    Article  Google Scholar 

  • Bonvalot S, Balmino G, Briais A, Kuhn M, Peyrefitte A, Vales N (2012) World Gravity Map, 1:50,000,000 map, Eds. BGI-CGMW-CNES-IRD. Paris

  • Brockmann JM, Zehentner N, Höck E, Pail R, Loth I, Mayer-Gürr T, Schuh W-D (2014) EGM_TIM_RL05: An independent geoid with centimeter accuracy purely based on the GOCE mission. Geophys Res Lett 41(22):8089–8099. doi:10.1002/2014GL061904

    Article  Google Scholar 

  • Bucha B, Janák J (2014) A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders: efficient computation at irregular surfaces. Comput Geosci 66:219–227. doi:10.1016/j.cageo.2014.02.005

    Article  Google Scholar 

  • Claessens SJ (2006) Solutions to ellipsoidal boundary value problems for gravity field modelling. PhD thesis, Curtin University of Technology, Perth, Western Australia

  • Claessens SJ (2005) New relations among associated Legendre functions and spherical harmonics. J Geod 79(6–7):398–406. doi:10.1007/s00190-005-0483-9

    Article  Google Scholar 

  • Claessens SJ, Hirt C (2013) Ellipsoidal topographic potential—new solutions for spectral forward gravity modelling of topography with respect to a reference ellipsoid. J Geophys Res Solid Earth 118(15):5991–6002. doi:10.1002/2013JB010457

    Article  Google Scholar 

  • Davis M (2001) Subglacial morphology and structural geology in the Southern Transantarctic Mountains from airborne geophysics. M.S. Thesis, University of Texas, p 133

  • Diehl T, Holt J, Blankenship D, Young D, Jordan T, Ferraccioli F (2008) First airborne gravity results over the Thwaites Glacier catchment, West Antarctica. Geochem Geophys Geosyst 9(4):Q04011. doi:10.1029/2007GC001878

    Article  Google Scholar 

  • Fecher T, Pail R, Gruber T (2015) Global gravity field modeling based on GOCE and complementary gravity data. Int J Appl Earth Obs Geoinformation 35:120–127. doi:10.1016/j.jag.2013.10.005

    Article  Google Scholar 

  • Flury J, Rummel R (2005) Future satellite gravimetry for geodesy. Earth Moon Planets 94:13–29. doi:10.1007/s11038-005-3756-7

    Article  Google Scholar 

  • Forsberg R (1984a) Local covariance functions and density distribution. OSU Report 356, Department of Geodetic Science and Surveying, Ohio State University, Columbus

  • Forsberg R (1984b) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. OSU Report 355. Department of Geodetic Science and Surveying, Ohio State University, Columbus

  • Forsberg R, Olesen AV, Yildiz H, Tscherning CC (2011) Polar gravity fields from GOCE and airborne gravity. In: Proc of 4th international GOCE user workshop, ESA SP-696. Munich

  • Förste C, Bruinsma SL, Abrikosov O, Lemoine J-M, Schaller T, Götze H-J, Ebbing J, Marty JC, Flechtner F, Balmino G, Biancale R (2014) EIGEN-6C4 the latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. In: Presented at the 5th GOCE user workshop. Paris

  • Fretwell P, Pritchard HD, Vaughan DG, Bamber JL et al (2013) Bedmap2: improved ice bed, surface and thickness data sets for Antarctica. The Cryosphere 7:375–393

    Article  Google Scholar 

  • Grombein T, Luo X, Seitz K, Heck B (2014) A wavelet-based assessment of topographic isostatic reductions for GOCE gravity gradients. Surv Geophys 35(4):959–982. doi:10.1007/s10712-014-9283-1

    Article  Google Scholar 

  • Hirt C (2012) Efficient and accurate high-degree spherical harmonic synthesis of gravity field functionals at the Earth’s surface using the gradient approach. J Geod 86(13):729–744. doi:10.1007/s00190-012-0550-y

    Article  Google Scholar 

  • Hirt C, Claessens SJ, Kuhn M, Featherstone WE (2012) Indirect evaluation of Mars gravity model 2011 using a replication experiment on Earth. Stud Geophys Geodetica 56(2012):957–975. doi:10.1007/s11200-011-0468-5

    Article  Google Scholar 

  • Hirt C, Claessens SJ, Fecher T, Kuhn M, Pail R, Rexer M (2013) New ultra-high resolution picture of Earth’s gravity field. Geophys Res Lett 40(16):4279–4283. doi:10.1002/grl.50838

    Article  Google Scholar 

  • Hirt C (2014) GOCE’s view below the ice of Antarctica: satellite gravimetry confirms improvements in Bedmap2 bedrock knowledge. Geophys Res Lett 41(18):5021–5028. doi:10.1002/2014GL060636

    Article  Google Scholar 

  • Hirt C, Kuhn M, Claessens SJ, Pail R, Seitz K, Gruber T (2014) Study of the Earth’s short-scale gravity field using the ERTM2160 gravity model. Comput Geosci 73:71–80. doi:10.1016/j.cageo.2014.09.00

    Article  Google Scholar 

  • Hirt C, Kuhn M (2014) Band-limited topographic mass distribution generates a full-spectrum gravity field—gravity forward modelling in the spectral and spatial domain revisited. J Geophys Res Solid Earth 119(4):3646–3661. doi:10.1002/2013JB010900

    Article  Google Scholar 

  • Hirt C, Rexer M (2015) Earth 2014: 1 arc-min shape, topography, bedrock and ice-sheet models—available as gridded data and degree-10,800 spherical harmonics. Int J Appl Earth Obs Geoinformation 39:103–112. doi:10.1016/j.jag.2015.03.001

    Article  Google Scholar 

  • Hirt C, Rexer M, Claessens SJ (2015) Topographic evaluation of fifth-generation GOCE gravity field models—globally and regionally. In: Special issue on validation of GOCE gravity fields. Newton’s Bulletin, vol 5, pp 163–186

  • Holmes SA (2003) High degree spherical harmonic synthesis for simulated earth gravity modelling. PhD Thesis, Department of Spatial Sciences, Curtin University of Technology, Perth, Western Australia

  • Holmes SA, Pavlis NK (2007) Some aspects of harmonic analysis of data gridded on the ellipsoid. In: Proceedings of the 1st international symposium of the international gravity field service (IGFS). Istanbul, pp 151–156

  • Holmes SA, Roman D (2010) The application of high-degree gravitational models to processing airborne gravity collected under the NGS GRAV-D project. In: Paper presented at FIG Congress 2010. Facing the Challenges—Building the Capacity, Sydney

  • Holmes SA, Featherstone WE (2002) A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalized associated Legendre functions. J Geod 76(5):279–299. doi:10.1007/s00190-002-0216-2

    Article  Google Scholar 

  • Holt J, Richter T, Kempf S, Morse D, Blankenship D (2006) Airborne gravity over Lake Vostok and adjacent highlands of East Antarctica. Geochem Geophys Geosyst 7(15):Q11012. doi:10.1029/2005GC001177

    Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe v4.1. Available from the CGIAR-SXI SRTM 90m database at: http://srtm.csi.cgiar.org

  • Jekeli C (2010) Correlation modeling of the gravity field in classical geodesy. In: Freeden W, Nashed MZ, Sonar T (eds), Handbook of geomathematics, pp 833–866. doi:10.1007/978-3-642-01546-5_28

  • Jekeli C (1988) The exact transformation between ellipsoidal and spherical expansions. Manuscr Geodaetica 13:106–113

    Google Scholar 

  • Luyendyk B, Wilson D, Siddoway C (2003) Eastern margin of the Ross Sea Rift in western Marie Byrd Land, Antarctica: crustal structure and tectonic development. Geochem Geophys Geosyst 4(14):1090. doi:10.1029/2002GC000462

    Google Scholar 

  • Lythe, MB, Vaughan DG, and the Bedmap Consortium (2001) BEDMAP: a new ice thickness and subglacial topography model of Antarctica. J Geoph Res 106(B6):11335–11351. doi:10.1029/2000JB900449

  • Mayer-Gürr T, Kurtenbach E, Eicker A (2010) ITG-Grace2010: the new GRACE gravity field release computed in Bonn. In: Paper presented at European Geosciences Union General Assembly 2010, Geophys. Res. Abstr., vol 12, EGU2010-2446. Vienna

  • Mayer-Gürr T, Rieser D, Höck E, Brockmann JM, Schuh W-D, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03s. Abstract at GGHS2012, Venice (Poster)

  • McKenzie D, Yi W, Rummel R (2015) Estimates of Te for continental regions using GOCE gravity. Earth Planet Sci Lett 399:116–127. doi:10.1016/j.epsl.2014.05.003

    Article  Google Scholar 

  • Morgan PJ, Featherstone WE (2009) Evaluating EGM2008 over East Antarctica. Newton’s Bull 4:317–331

    Google Scholar 

  • O’Donnell JP, Nyblade AA (2014) Antarctica’s hypsometry and crustal thickness: implications for the origin of anomalous topography in Antarctica. Earth Plan Sci Lett 388:143–155. doi:10.1016/j.epsl.2013.11.051

    Article  Google Scholar 

  • Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W-D, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85(15):819–843. doi:10.1007/s00190-011-0467-x

    Article  Google Scholar 

  • Pavlis NK, Factor JK, Holmes SA (2007) Terrain-related gravimetric quantities computed for the next EGM. In: Proceedings of the 1st international symposium of the international gravity field service (IGFS). Istanbul, pp 318–323

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth gravitational model 2008 (EGM2008). J Geophys Res 117(B4):B04406

    Google Scholar 

  • Rapp RH (1997) Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference. J Geod 71(5):282–289

    Article  Google Scholar 

  • Rexer M, Hirt C (2015) Spectral analysis of the Earth’s topographic potential via 2D-DFT—a new data-based degree variance model to degree 90,000. J Geod 89(9):887–909. doi:10.1007/s00190-015-0822-4

  • Rummel R, Horwath M, Yi W, Albertella A, Bosch W, Haagmans R (2011) GOCE, satellite gravimetry and antarctic mass transports. Surv Geophy 32(4–5):643–657. doi:10.1007/s10712-011-9115-5

    Article  Google Scholar 

  • Rummel R (2013) Height unification using GOCE. J Geod Sci 2(4):355–362. doi:10.2478/v10156-011-0047-2

    Google Scholar 

  • Rummel R, Rapp RH, Sünkel H, Tscherning CC (1988) Comparisons of global topographic/isostatic models to the Earth’s observed gravity field. Report No 388, Dep, Geodetic Sci. Surv., Ohio State University, Columbus, Ohio

  • Scheinert M (2012) Progress and prospects of the Antarctic Geoid Project (Commission Project 2.4), in Geodesy for Planet Earth. In: IAG Conf. Series, vol. 136. Springer, Berlin, pp 451–456

  • Scheinert, M, Ferraccioli F, Schwabe J, Bell R, Studinger M, Damaske D, Jokat W, Aleshkova N, Jordan T, Leichenkov G, Blankenship DD, Damiani TM, Young D (2015) New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica. Geophys Res Lett. (post-revision)

  • Scheinert M, Müller J, Dietrich R, Damaske D, Damm V (2008) Regional geoid determination in Antarctica utilizing airborne gravity and topography data. J Geod 82(7):403–414. doi:10.1007/s00190-007-0189-2

    Article  Google Scholar 

  • Schwabe, J, Scheinert M, Dietrich R, Ferracccioli F, Jordan T (2012) Regional geoid improvement over the Antarctic Peninsula utilizing airborne gravity data. In: Geodesy for Planet Earth, IAG Conf. Series, vol 136. Springer, Berlin, pp 457–464

  • Schwabe J, Ewert H, Scheinert M, Dietrich R (2014) Regional geoid modelling in the area of subglacial Lake Vostok, Antarctica. J Geodyn 75:9–21. doi:10.1016/j.jog.2013.12.002

    Article  Google Scholar 

  • Schwabe J, Scheinert M (2014) Regional geoid of the Weddell Sea, Antarctica, from heterogeneous ground-based gravity data. J Geod 88(13):821–838. doi:10.1007/s00190-014-0724-x

    Article  Google Scholar 

  • Shepherd A, Ivins ER, Geruo A et al (2012) A reconciled estimate of ice sheet mass balance. Science 338:1183–1189. doi:10.1126/science.1228102

    Article  Google Scholar 

  • Smith DA, Holmes SA, Li X, Guillaume Y, Wang YM, Bürki B, Roman DR, Damiani TM (2013) Confirming regional 1 cm differential geoid accuracy from airborne gravimetry: the Geoid Slope Validation Survey of 2011. J Geod 87(10–12):885–907. doi:10.1007/s00190-013-0653-0

    Article  Google Scholar 

  • Sneeuw N, van Gelderen M (1997) The polar gap. In: Sanso F, Rummel R (eds) Geodetic boundary value problems in view of the 1 cm geoid. Lecture notes in earth sciences, vol 65. Springer, Berlin, pp 559–568. doi:10.1007/BFb0011717

  • Studinger M, Bell R, Finn C, Blankenship D (2002) Mesozoic and Cenozoic extensional tectonics of the West Antarctic Rift System from high-resolution airborne geophysical mapping. R Soc N Z Bull 35:563–569

    Google Scholar 

  • Studinger M et al (2003a) Ice cover, landscape setting, and geological framework of Lake Vostok, East Antarctica. Earth Planet Sci Lett 205(3–4):195–210. doi:10.1016/S0012-821X(02)01041-5

  • Studinger M, Karner G, Bell R, Levin V, Raymond C, Tikku A (2003b) Geophysical models for the tectonic framework of the Lake Vostok region, East Antarctica. Earth Planet Sci Lett 216(4):663–677. doi:10.1016/S0012-821X(03)00548-X

  • Studinger M, Bell RE, Roger Buck W, Karner GD, Blankenship DD (2004) Sub-ice geology inland of the Transantarctic Mountains in light of new aerogeophysical data. Earth Planet Sci Lett 220(3–4):391–408. doi:10.1016/S0012-821X(04)00066-4

    Article  Google Scholar 

  • Studinger M, Bell RE, Fitzgerald PG, Buck WR (2006) Crustal architecture of the Transantarctic Mountains between the Scott and Reedy Glacier region and South Pole from aerogeophysical data. Earth Planet Sci Lett 250(1–2):182–199. doi:10.1016/j.epsl.2006.07.035

    Article  Google Scholar 

  • Tenzer R, Chen W, Tsoulis D, Bagherbandi M, Sjöberg LE, Novák P, Jin S (2015) Analysis of the refined CRUST1.0 crustal model and its gravity field. Surv Geophys 36:139–165. doi:10.1007/s10712-014-9299-6

    Article  Google Scholar 

  • Tenzer R, Abdalla A, Vajda P, Hamayun (2010) The spherical harmonic representation of the gravitational field quantities generated by the ice density contrast. Contrib Geophys Geod 40(3):207–223. doi:10.2478/v10126-010-0009-1

  • Torge W, Müller J (2012) Geodesy, 4th edn. de Gruyter, Berlin

  • van der Meijde M, Pail R, Bingham R, Floberghagen R (2015) GOCE data, models, and applications: a review. Int J Appl Earth Obs Geoinformation 35:4–15. doi:10.1016/j.jag.2013.10.001

    Article  Google Scholar 

  • von Frese RRB, Potts LV, Wells SB et al (2009) GRACE gravity evidence for an impact basin in Wilkes Land, Antarctica. Geochem Geophys Geosystems 10(2):1–14. doi:10.1029/2008GC002149

    Google Scholar 

  • Wessel P, Smith WHF, Scharroo R, Luis JF, Wobbe F (2013) Generic mapping tools: improved version released, EOS. Trans AGU 94:409–410

    Article  Google Scholar 

Download references

Acknowledgments

We thank three anonymous reviewers for their comments on this manuscript. This study received support from the Australian Research Council (ARC, grant DP120102441) and Curtin University’s Office of Research and Development. Further, it was created with the support of the Technische Universität München—Institute for Advanced Study, funded by the German Excellence Initiative. Christian Hirt is the recipient of an ARC Discovery Outstanding Researcher Award and of a Hans-Fischer Fellowship by IAS. Parts of the computations were carried out with resources provided by the Leibniz Rechenzentrum München. We thank Jan-Martin Brockmann for providing GOCE data sets and Thomas Fecher for providing routines for solving of normal equations. The topographic potential model dV_ELL_RET2014 and combined SatGravRET2014 model will be delivered to IAG’s ICGEM service (http://icgem.gfz-potsdam.de/ICGEM/). Our models are also available via ddfe.curtin.edu.au/models/Antarctica. The topographic input data sets used in this study can be downloaded from http://ddfe.curtin.edu.au/models/Earth2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hirt.

Appendix

Appendix

The fully normalized sinusoidal Legendre weight functions \(\overline{K} _{nm}^{2i,2j} \) in Eq. (4) can be computed via various recursive schemes (Claessens 2005)

$$\begin{aligned}&\overline{K} _{nm}^{2i,2j} =\mathop \sum \limits _{k=-1}^1 \overline{K} _{nm}^{2i-2k,2j-2} \overline{K} _{n+2i-2k,m}^{2k,2}\end{aligned}$$
(15)
$$\begin{aligned}&\overline{K}_{nm}^{2i,2j} =\mathop \sum \limits _{k=-1}^1 \overline{K}_{nm}^{2k,2} \overline{K} _{n+2k,m}^{2i-2k,2j-2}\end{aligned}$$
(16)
$$\begin{aligned}&\overline{K} _{nm}^{2i,2j} =\mathop \sum \limits _{k=-1}^1 \overline{K} _{nm}^{2i+2k,2j-2} \overline{K} _{n+2i,m}^{2k,2} \end{aligned}$$
(17)

where (17) follows from (15) and the relation

$$\begin{aligned} \overline{K} _{nm}^{2i,2j} =\overline{K} _{n+2i,m}^{-2i,2j} \end{aligned}$$
(18)

Equations (15)–(17) can all be used to compute the function \(\overline{K} _{nm}^{2i,2j}\) for any pair of iand jfrom the initial values

$$\begin{aligned}&\overline{K} _{nm}^{-2,2} =-\sqrt{\frac{( {n^2-m^2})[( {n+1})^2-m^2]}{( {2n-3})( {2n-1})^2(2n+1)}}\end{aligned}$$
(19)
$$\begin{aligned}&\overline{K} _{nm}^{0,2} =\frac{2(n^2+m^2+n-1)}{( {2n-1})(2n+3)}\end{aligned}$$
(20)
$$\begin{aligned}&\overline{K} _{nm}^{2,2} =-\sqrt{\frac{[( {n+1})^2-m^2][( {n+2})^2-m^2]}{( {2n+1})( {2n+3})^2(2n+5)}} \end{aligned}$$
(21)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirt, C., Rexer, M., Scheinert, M. et al. A new degree-2190 (10 km resolution) gravity field model for Antarctica developed from GRACE, GOCE and Bedmap2 data. J Geod 90, 105–127 (2016). https://doi.org/10.1007/s00190-015-0857-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0857-6

Keywords

Navigation