Skip to main content

Advertisement

Log in

Three-Corner Hat for the assessment of the uncertainty of non-linear residuals of space-geodetic time series in the context of terrestrial reference frame analysis

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

We discuss the application of the Three-Corner Hat (TCH) to time series of space-geodetic station position residuals with the purpose of characterizing the uncertainties of GPS, VLBI, SLR, DORIS for the International Terrestrial Reference Frame (ITRF) determination. Adopting simulations, we show that, in the absence of time-correlated errors, TCH is able to fully recover the nominal uncertainties of groups of observations whose intrinsic precisions are remarkably dissimilar to one another, as is the case for the space-geodetic techniques. When time-correlated errors are predominant, as it happens with GPS, TCH is affected by the increased variance of the observations and its estimates are positively biased. TCH applied to 16 ITRF co-located sites confirms that GPS, albeit affected by time-correlated errors, is the most precise of the space-geodetic techniques. GPS median uncertainties are 1.1, 1.2 and 2.8 mm, for the north, east and height component, respectively. VLBI performs particularly well in the horizontal component, the median uncertainties being \({\approx }2\) mm. The height component is \({\sim }3\) times larger than the GPS one. SLR and DORIS median uncertainties exceed by far the 7 mm level on all of the three components. Comparing TCH results with station position repeatabilities, we find that the two metrics are in striking agreement for VLBI and DORIS, but not for SLR and GPS. The inconsistencies between TCH and station repeatabilities for co-located GPS and SLR point to the presence of either specific station-dependent biases or low-quality co-locations. Scaling factors derived adopting the ratio between TCH and median formal errors on the positions suggest the station position covariances have to be up-scaled for VLBI, SLR, DORIS and down-scaled for GPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/sinex__cont.html.

  2. Available at http://itrf.ensg.ign.fr/ITRF_solutions/2008/computation_strategy.php?page=2.

  3. The list of ITRF2008 discrepancies can be accessed at http://itrf.ensg.ign.fr/ITRF_solutions/2008/ITRF2008.php.

References

  • Allan DW (1987) Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators. IEEE Trans Ultrason Ferroelectr Freq Control UFFC 34(6):647–654. doi:10.1109/T-UFFC.1987.26997

    Article  Google Scholar 

  • Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the International Terrestrial Reference Frame for Earth science applications. J Geophys Res 107(B10):2114–2133

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res 112(B09):401. doi:10.1029/2007JB004949

    Google Scholar 

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Amiri-Simkooei AR, Tiberius CCJM, Teunissen PJG (2007) Assessment of noise in GPS coordinate time series: methodology and results. J Geophys Res 112(B7). doi:10.1029/2006JB004913

  • Beavan J (2005) Noise properties of continuous GPS data from concrete pillar geodetic monuments in New Zealand and comparison with data from US deep drilled braced monuments. J Geophys Res 110(B08):410. doi:10.1029/2005JB003642

    Google Scholar 

  • Bizouard C, Gambis D (2011) The combined solution C04 for Earth Orientation Parameters consistent with ITRF2008. Technical report, Observatoire de Paris, SYRTE, 61 Av de l’Observatoire, Paris, France. http://hpiers.obspm.fr/iers/eop/eopc04/C04.guide

  • Böckmann S, Artz T, Nothnagel A (2010) VLBI terrestrial reference frame contributions to ITRF2008. J Geod 84(3):201–219. doi:10.1007/s00190-009-0357-7

    Article  Google Scholar 

  • Chin TM, Gross RS, Dickey JO (2005) Multi-reference evaluation of uncertainty in Earth Orientation Parameter measurements. J Geod 79(1–3):24–32. doi:10.1007/s00190-005-0439-0

    Article  Google Scholar 

  • Collilieux X, Altamimi Z, Coulot D, Ray J, Sillard P (2007) Comparison of very long baseline interferometry, GPS and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods. J Geophys Res 112(B12):403. doi:10.1029/2007JB004933

    Article  Google Scholar 

  • Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2009) Effect of the satellite laser ranging network distribution on geocenter motion estimation. J Geophys Res 114(B04):402. doi:10.1029/2008JB005727

    Google Scholar 

  • Collilieux X, Métivier L, Altamimi Z, van Dam T, Ray J (2011) Quality assessment of GPS reprocessed terrestrial reference frame. GPS Solut 15(3):219–231. doi:10.1007/s10291-010-0184-6

    Article  Google Scholar 

  • Collilieux X, van Dam T, Ray J, Coulot D, Métivier L, Altamimi Z (2012) Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. J Geod 86(1):1–14. doi:10.1007/s00190-011-0487-6

    Article  Google Scholar 

  • Davis JL, Wernicke BP, Tamisiea ME (2012) On seasonal signals in geodetic time series. J Geophys Res 117(B01):403. doi:10.1029/2011JB008690

    Google Scholar 

  • Feissel-Vernier M, de Viron O, Le Bail K (2007) Stability of VLBI, SLR, DORIS, and GPS positioning. Earth Planets Space 59(6):475–497

    Article  Google Scholar 

  • Gambis D (2002) Allan variance in Earth rotation time series. In: Drewes H, Dow JM (eds) New trends in space geodesy, advances in space research, vol 30, pp 207–212. doi:10.1016/S0273-1177(02)00286-7

  • Gambis D (2004) Monitoring Earth orientation using space-geodetic techniques: state-of-the-art and prospective. J Geod 78(4–5):295–303. doi:10.1007/s00190-004-0394-1

    Article  Google Scholar 

  • Gobinddass ML, Willis P, de Viron O, Sibthorpe A, Zelensky NP, Ries JC, Ferland R, Bar-Sever Y, Diament M (2009) Systematic biases in DORIS-derived geocenter time series related to solar radiation pressure mis-modeling. J Geod 83(9):849–858. doi:10.1007/s00190-009-0303-8

    Article  Google Scholar 

  • Hosking JRM (1981) Fractional differencing. Biometrika 68(1):165–176. doi:10.1093/biomet/68.1.165

    Article  Google Scholar 

  • Kasdin NJ (1995) Discrete simulation of colored noise and stochastic processes and \(1/f^{\alpha }\) power law noise generation. Proc IEEE 83(5):802–827. doi: 10.1109/5.381848

    Article  Google Scholar 

  • Koot L, de Viron O, Dehant V (2006) Atmospheric angular momentum time-series: characterization of their internal noise and creation of a combined series. J Geod 79(12):663–674. doi:10.1007/s00190-005-0019-3

    Article  Google Scholar 

  • Langbein J, Johnson H (1997) Correlated errors in geodetic time series: implications for time-dependent deformation. J Geophys Res 102(B1):591–603

    Article  Google Scholar 

  • Le Bail K (2006) Estimating the noise in space-geodetic positioning: the case of DORIS. J Geod 80(8–11):541–565. doi:10.1007/s00190-006-0088-y

    Article  Google Scholar 

  • Mao A, Harrison CGA, Dixon TH (1999) Noise in GPS coordinate time series. J Geophys Res 104(B2):2797–2816. doi:10.1029/1998JB900033

    Article  Google Scholar 

  • Pavlis E, Luceri V, Sciarretta C, Kelm R (2011) The ILRS contribution to ITRF2008. Technical report. Int Laser Rang Serv, Greenbelt, MD. http://itrf.ensg.ign.fr/ITRF_solutions/2008/doc/ILRSSubmission4ITRF2008. On-line Accessed 1 Sept 2014

  • Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12(1):55–64. doi:10.1007/s10291-007-0067-7

    Article  Google Scholar 

  • Ray J, Griffiths J, Collilieux X, Rebischung P (2013) Subseasonal GNSS positioning errors. Geophys Res Lett 40(22):5854–5860. doi:10.1002/2013GL058160

    Article  Google Scholar 

  • Santamaría-Gómez A, Bouin MN, Collilieux X, Wöppelmann G (2011) Correlated errors in GPS position time series: implications for velocity estimates. J Geophys Res 116(B01):405. doi:10.1029/2010JB007701

  • Sillard P, Boucher C (2001) A review of algebraic constraints in terrestrial reference frame datum definition. J Geod 75:63–73. doi:10.1007/s001900100166

    Article  Google Scholar 

  • Tregoning P, van Dam T (2005) Effects of atmospheric pressure loading and seven-parameter transformations on estimates of geocenter motion and station heights from space geodetic observations. J Geophys Res 110(B3). doi:10.1029/2004JB003334

  • Valette JJ, Lemoine FG, Ferrage P, Yaya P, Altamimi Z, Willis P, Soudarin L (2010) IDS contribution to ITRF2008. Adv Space Res 46(12):1614–1632. doi:10.1016/j.asr.2010.05.029

    Article  Google Scholar 

  • Williams SDP (2003) The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J Geod 76(9–10):483–494. doi:10.1007/s00190-002-0283-4

    Article  Google Scholar 

  • Williams SDP (2008) CATS: GPS coordinate time series analysis software. GPS Solut 12(2):147–153. doi:10.1007/s10291-007-0086-4

    Article  Google Scholar 

  • Williams SDP, Bock Y, Fang P, Jamason P, Nikolaidis RM, Prawirodirdjo L, Miller M, Johnson DJ (2004) Error analysis of continuous GPS position time series. J Geophys Res 109(B03):412. doi:10.1029/2003JB002471

    Google Scholar 

  • Wyatt F (1982) Displacement of surface monuments: horizontal motion. J Geophys Res 87(B2):979–989

    Article  Google Scholar 

  • Wyatt F (1989) Displacement of surface monuments: vertical motion. J Geophys Res 94(B2):1655–1664

    Article  Google Scholar 

  • Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich S, Wdowinski S, Behr J (1997) Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocities. J Geophys Res 102(B08):18035–18055. doi:10.1029/97JB01380

    Article  Google Scholar 

Download references

Acknowledgments

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with National Aeronautics and Space Administration. C. Abbondanza wishes to thank J. Ray for the fruitful exchange which contributed to improving the presentation of this manuscript and P. Willis for the useful discussions on the usage of DORIS solutions. D. MacMillan is also gratefully acknowledged for having provided VLBI daily time series adopted to test the Three-Corner Hat at an early stage of this study. We wish to thank J. Ries and three anonymous reviewers for their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Abbondanza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 918 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbondanza, C., Altamimi, Z., Chin, T.M. et al. Three-Corner Hat for the assessment of the uncertainty of non-linear residuals of space-geodetic time series in the context of terrestrial reference frame analysis. J Geod 89, 313–329 (2015). https://doi.org/10.1007/s00190-014-0777-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-014-0777-x

Keywords

Navigation