Skip to main content
Log in

A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Skew-normal/independent distributions provide an attractive class of asymmetric heavy-tailed distributions to the usual symmetric normal distribution. We use this class of distributions here to derive a robust generalization of sinh-normal distributions (Rieck in Statistical analysis for the Birnbaum–Saunders fatigue life distribution, 1989), we then propose robust nonlinear regression models, generalizing the Birnbaum–Saunders regression models proposed by Rieck and Nedelman (Technometrics 33:51–60, 1991) that have been studied extensively. The proposed regression models have a nice hierarchical representation that facilitates easy implementation of an EM algorithm for the maximum likelihood estimation of model parameters and provide a robust alternative to estimation of parameters. Simulation studies as well as applications to a real dataset are presented to illustrate the usefulness of the proposed model as well as all the inferential methods developed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andrews DF, Mallows CL (1974) Scale mixtures of normal distributions. J R Stat Soc Ser B 36:99–102

    MathSciNet  MATH  Google Scholar 

  • Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12(2):171–178

    MathSciNet  MATH  Google Scholar 

  • Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew-t distribution. J R Stat Soc Ser B 65:367–389

    Article  MathSciNet  Google Scholar 

  • Balakrishnan N, Leiva V, Sanhueza A, Vilca F (2009) Estimation in the Birnbaum–Saunders distribution based on scale-mixture of normals and the EM-algorithm. Stat Oper Res T 33:171–192

    MathSciNet  MATH  Google Scholar 

  • Basford KE, Greenway DR, McLachlan GJ, Peel D (1997) Standard errors of fitted component means of normal mixtures. Comput Stat 12:1–17

    MATH  Google Scholar 

  • Birnbaum ZW, Saunders SC (1969a) A new family of life distributions. J Appl Probab 6:637–652

    Article  MathSciNet  Google Scholar 

  • Birnbaum ZW, Saunders SC (1969b) Estimation for a family of life distributions with applications to fatigue. J Appl Probab 6:328–347

    Article  MathSciNet  Google Scholar 

  • Branco MD, Dey DK (2001) A general class of multivariate skew-elliptical distributions. J Multivar Anal 79:99–113

    Article  MathSciNet  Google Scholar 

  • Butler RL, McDonald JB, Nelson RD, White SB (1990) Robust and partly adaptive estimation of regression models. Rev Econ Stat 72:321–327

    Article  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39:1–38

    MathSciNet  MATH  Google Scholar 

  • Farias RBA, Lemonte AJ (2011) Bayesian inference for the Birnbaum–Saunders nonlinear regression model. Stat Methods Appl 20:423–438

    Article  MathSciNet  Google Scholar 

  • Ferreira CS, Lachos VH, Bolfarine H (2015) Inference and diagnostics in skew scale mixtures of normal regression models. J Stat Comput Simul 85(3):517–537

    Article  MathSciNet  Google Scholar 

  • Garay AM, Lachos V, Bolfarine H, Cabral CRB (2017) Linear censored regression models with scale mixtures of normal distributions. Stat Pap 58:247–278

    Article  MathSciNet  Google Scholar 

  • Johnson NL (1949) Systems of frequency curves generated by methods of translation. Biometrika 36:146–176

    Article  MathSciNet  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous Univariate Distributions, vol 1, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Lachos VH, Ghosh P, Arellano-Valle RB (2010) Likelihood based inference for skew normal independent linear mixed models. Stat Sin 20:303–322

    MathSciNet  MATH  Google Scholar 

  • Lange KL, Little JA, Taylor MGJ (1989) Robust statistical modeling using the t distribution. J Am. Stat Assoc 84:881–896

    MathSciNet  Google Scholar 

  • Lange K, Sinsheimer JS (1993) Normal/independent distributions and their applications in robust regression. J Comput Graph Stat 2:175–198

    MathSciNet  Google Scholar 

  • Lee SY, Lu B, Song XY (2006) Assessing local influence for nonlinear structural equation models with ignorable missing data. Comp Stat Data Anal 5:1356–1377

    Article  MathSciNet  Google Scholar 

  • Leiva V, Vilca F, Balakrishnan N, Sanhueza A (2010) A skewed sinh-normal distribution and its properties and application to air pollution. Commun Stat Theor Methods 39:426–443

    Article  MathSciNet  Google Scholar 

  • Lemonte AJ, Cordeiro GM (2009) Improved maximum likelihood estimation in Birnbaum–Saunders nonlinear regressions. Comput Stat Data Anal 53:4441–4452

    Article  Google Scholar 

  • Lin DY (1994) Cox regression analysis of multivariate failure time data: the marginal approach. Stat Med 13:2233–2247

    Article  Google Scholar 

  • Martínez-Flórez G, Bolfarine H, Gómez HW (2017) The log-linear Birnbaum–Saunders power model. Methodol Comput Appl Probab 19:913–933

    Article  MathSciNet  Google Scholar 

  • Paula GA, Leiva V, Barros M, Liu S (2011) Robust statistical modeling using the Birnbaum–Saunders-t distribution applied to insurance. Appl Stoch Models Bus Ind 28:16–34

    Article  MathSciNet  Google Scholar 

  • Rieck JR (1989) Statistical analysis for the Birnbaum–Saunders fatigue life distribution. Ph.D. dissertation, Clemson University, South Carolina

  • Rieck JR, Nedelman JR (1991) A log-linear model for the Birnbaum–Saunders distribution. Technometrics 33:51–60

    MATH  Google Scholar 

  • Santana L, Vilca F, Leiva V (2011) Influence analysis in skew-Birnbaum–Saunders regression models and applications. J Appl Stat 38:1633–1649

    Article  MathSciNet  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002) Bayesian measures of complexity and fit. J R Stat Soc Ser B 64:1–34

    Article  MathSciNet  Google Scholar 

  • Tamandi M, Jamalizadeh A, Lin TI (2019) Shape mixtures of skew-t-normal distributions: characterizations and estimation. Comput Stat 34:323–347

    Article  MathSciNet  Google Scholar 

  • Vilca F, Santana L, Leiva V, Balakrishnan N (2011) Estimation of extreme percentile in Birnbaum–Saunders distributions. Comput Stat Data Anal 55:1665–1678

    Article  MathSciNet  Google Scholar 

  • Vilca F, Zeller CB, Cordeiro GM (2015) The sinh-normal/independent nonlinear regression model. J Appl Stat 42:1659–1676

    Article  MathSciNet  Google Scholar 

  • Vilca F, Azevedo CLN, Balakrishnan N (2017) Bayesian inference for sinh-normal/independent nonlinear regression models. J Appl Stat 44:2052–2074

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was partially supported by a CNPq (309086/2009-4) and FAPESP grant from Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filidor Vilca.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Special cases of sinh-SNI models

Appendix A: Special cases of sinh-SNI models

  1. i)

    The sinh-SCN distribution

    This distribution is based on the SCN model, which is called sinh-skew-contaminated normal (sinh-SCN) distribution. Here, U is a discrete random variable with pdf \( h(u;\nu ,\gamma )=\nu {\mathbb {I}}_{\{\gamma \}}(u)+(1-\nu ) {\mathbb {I}}_{\{1\}}(u)\), with \( 0< \nu< 1, 0< \gamma < 1\), where \({\mathbb {I}}_A(\cdot )\) denotes the indicator function of the set A. Then, the pdf of Y is

    $$\begin{aligned} f_Y(y)= & {} \frac{2}{\sigma } \left[ \nu \phi \big (\xi _{2y};0,\frac{1}{\gamma }\big ) \Phi \big (\gamma ^{1/2}\,\lambda \xi _{2y}\big ) +(1-\nu )\phi \big (\xi _{2y}\big )\Phi \big (\lambda \xi _{2y}\big )\right] \xi _{1y}. \end{aligned}$$

    This distribution is denoted by \(Y\sim \text{ sinh-SCN }(\alpha ,\mu ,\sigma ,\lambda ;\nu ,\gamma )\). In this case,

    $$\begin{aligned} \kappa _r= & {} \frac{2\,\xi _{1y}}{ \sigma \,f_Y(y)}\left[ \nu \gamma ^r\phi \left( \xi _{2y};0,\gamma ^{-1}\right) \Phi \left( \gamma ^{1/2}\,\lambda \xi _{2y}\right) +(1-\nu )\phi \left( \xi _{2y}\right) \Phi \left( \lambda \xi _{2y}\right) \right] ,\\ \tau _r= & {} \frac{2\,\xi _{1y}}{\sigma \,f_Y(y)}\left[ \nu \gamma ^{r/2}\phi \left( \xi _{2y};0,\gamma ^{-1}\right) \Phi \left( \gamma ^{1/2}\,\lambda \xi _{2y}\right) +(1-\nu )\phi \left( \xi _{2y}\right) \Phi \left( \lambda \xi _{2y}\right) \right] . \end{aligned}$$

    Finally, d(Y) has its cdf as \(Pr(d(Y)\le \upsilon ) = \nu Pr(\chi ^2_1 \le \gamma \upsilon )+(1-\nu )Pr(\chi _1^2 \le \upsilon )\);

  2. ii)

    The sinh-SSL distribution

    In this case, \(U \sim \mathrm{Beta}(\nu ,1)\) distribution, and the resulting distribution is called the sinh-skew-slash (sinh-SSL) distribution, denoted by \(Y\sim \text{ sinh-SSL }(\alpha ,\mu ,\sigma ,\lambda ;\nu )\), and its pdf is given by

    $$\begin{aligned} f_Y(y)= \frac{2\,\nu }{\sigma }\int ^1_0u^{\nu -1}\phi (\xi _{2y};0,{1}/{u})\Phi (u^{1/2}\lambda \xi _{2y})du\, \xi _{1y}. \end{aligned}$$
    (19)

    In this case,

    $$\begin{aligned} \kappa _r= & {} \frac{2^{\nu +r+1}\nu \,\Gamma \left( \frac{2\nu +2r+1}{2}\right) \,\xi _{1y}}{f_Y(y)\sqrt{\pi }\,\sigma } P_1\Big (\frac{2\nu +2r+1}{2},\frac{\xi ^2_{2y}}{2}\Big ) \xi _{2y}^{-(2\nu +2r+1)}\\&\mathrm{E} \left[ \Phi \left( S^{1/2} \lambda \xi _{2y}\right) \right] ,\\ \tau _r= & {} \frac{2^{\nu +r/2+1/2}\,\nu \,\Gamma \left( \frac{2\nu +r+1}{2}\right) \,\xi _{1y} }{f_Y(y)\sqrt{\pi }^2\,\sigma } \left( \xi ^2_{2y}+\lambda ^2 \xi ^2_{2y}\right) ^{-\frac{2\nu +r+1}{2}} \\&P_1 \left( \frac{2\nu +r+1}{2},\frac{\xi ^2_{2y}+\lambda ^2 \xi ^2_{2y}}{2}\right) , \end{aligned}$$

    where \(P_x \left( a,b\right) \) denotes the cdf of the \(\mathrm{Gamma}(a,b)\) distribution evaluated at x and \(S \sim \mathrm{Gamma} \left( \frac{2\nu +2r+1}{2},\frac{\xi ^2_{2y}}{2}\right) {\mathbb {I}}_{(0,1)}\), a truncated gamma distribution on (0, 1). Finally, the cdf of d(Y) is \(Pr(d(Y)\le \upsilon ) = Pr(\chi ^2_1 \le \upsilon )-\displaystyle \frac{2^{\nu }\Gamma (\nu +1/2)}{\upsilon ^{\nu }\Gamma (1/2)} Pr(\chi _{2\nu +1}^2\le \upsilon )\);

  3. iii)

    The sinh-ST distribution

    This distribution is obtained when \(U \sim \mathrm{Gamma}(\nu /2,\nu /2)\), and the resulting distribution is called the sinh-skew-Student-t (sinh-ST) distribution. This distribution is denoted by \(Y\sim \text{ sinh-ST }(\alpha ,\mu ,\sigma ,\lambda ;\nu )\), and its pdf is given by

    $$\begin{aligned} f_Y(y)= \frac{2}{\sigma } \, t\big (\xi _{2y};\nu \big )\mathrm{T}\left( \sqrt{\frac{\nu +1}{\xi ^2_{2y}+\nu }}\,\, \lambda \xi _{2y};\nu +1\right) \xi _{1y}, \end{aligned}$$
    (20)

    where \(\mathrm{t}(.;\nu )\) and \(\mathrm{T}(.; \nu )\) denote, respectively, the pdf and cdf of the standard Student-t distribution. In this case, the conditional expectations are given by

    $$\begin{aligned} \kappa _r=\frac{2^{r+1}\,\nu ^{\nu /2} \Gamma \big (\frac{\nu +2r+1}{2}\big ) \big ( \xi ^2_{2y} + \nu \big )^{-\frac{\nu +2r+1}{2}}\,\xi _{1y}}{f_Y(y) \Gamma (\nu /2) \sqrt{\pi }\,\sigma } \mathrm{T} \left( \sqrt{\frac{\nu +2r+1}{\xi ^2_{2y}+\nu }}\, \lambda \xi _{2y};\nu +2r+1\right) \end{aligned}$$

    and

    $$\begin{aligned} \tau _r=\frac{2^{(r+1)/2}\,\nu ^{\nu /2}\,\Gamma \big (\frac{\nu +r+1}{2}\big ) \,\big ( \xi ^2_{2y} + \nu + \lambda ^2 \xi ^2_{2y} \big )^{-\frac{\nu +r+1}{2}}\,\xi _{1y}}{f_Y(y) \Gamma \left( \nu /2\right) \sqrt{(\pi )}^2\,\sigma }. \end{aligned}$$

    Finally, we have \(d(Y)\sim \mathrm{F}(1,\nu )\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maehara, R., Bolfarine, H., Vilca, F. et al. A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions. Metrika 84, 1049–1080 (2021). https://doi.org/10.1007/s00184-021-00815-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-021-00815-4

Keywords

Navigation