Skip to main content
Log in

Locally D-optimal designs for heteroscedastic polynomial measurement error models

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

This paper considers constructions of optimal designs for heteroscedastic polynomial measurement error models. Corresponding approximate design theory is developed by using corrected score function approach, which leads to non-concave optimisation problems. For the weighted polynomial measurement error model of degree p with some commonly used heteroscedastic structures, the upper bounds for the number of support points of locally D-optimal designs can be determined explicitly. A numerical example is given to show how heteroscedastic structures affect the optimal designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson A, Donev A, Tobias R (2007) Optimum experimental designs, with SAS. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Carroll R, Ruppert D, Stefanski L (2006) Measurement error in nonlinear models: a modern perspective, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  • Dette H, Trampisch M (2010) A general approach to \(D\)-optimal designs for weighted univariate polynomial regression models. J Korean Stat Soc 39:1–26

    Article  MathSciNet  Google Scholar 

  • Dette H, Trampisch M (2012) Optimal designs for quantile regression models. J Am Stat Assoc 107:1140–1151

    Article  MathSciNet  Google Scholar 

  • Donev AN (2004) Design of experiments in the presence of errors in factor levels. J Stat Plan Inference 126:569–585

    Article  MathSciNet  Google Scholar 

  • Doví VG, Reverberi AP, Maga L (1993) Optimal design of sequential experiments for error-in-variables models. Comput Chem Eng 17:111–115

    Article  Google Scholar 

  • Fedorov VV (1972) Theory of optimal experiments. Academic Press, New York

    Google Scholar 

  • Fuller WA (1987) Measurement error models. Wiley, New York

    Book  Google Scholar 

  • Gimenez P, Bolfarine H (1997) Corrected score functions in classical error-in-variables and incidental parameter models. Aust N Z J Stat 39:325–344

    Article  MathSciNet  Google Scholar 

  • He L, Yue RX (2017) R-optimal designs for multi-factor models with heteroscedastic errors. Metrika 80:717–732

    Article  MathSciNet  Google Scholar 

  • Karlin S, Studden WJ (1966) Tchebycheff systems: with applications in analysis and statistics. Wiley, New York

    MATH  Google Scholar 

  • Keeler S, Reilly P (1992) The design of experiments when there are errors in all the variables. Can J Chem Eng 70:774–778

    Article  Google Scholar 

  • Kiefer J (1974) General equivalence theory for optimum designs (approximate theory). Ann Stat 2:849–879

    Article  MathSciNet  Google Scholar 

  • Konstantinou M, Dette H (2015) Locally optimal designs for errors-in-variables models. Biometrika 102:951–958

    Article  MathSciNet  Google Scholar 

  • Konstantinou M, Dette H (2017) Bayesian D-optimal designs for error-in-variables models. Appl Stoch Models Bus Ind 33:269–281

    Article  MathSciNet  Google Scholar 

  • Nakamura T (1990) Corrected score function for errors-in-variables models: methodology and application to generalized linear models. Biometrika 77:127–137

    Article  MathSciNet  Google Scholar 

  • Pólya G, Szegö G (1925) Aufgaben und Lehrsätze aus der Analysis, Band II. Springer, Berlin

    Book  Google Scholar 

  • Pukelsheim F (2006) Optimal design of experiments. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Pronzato L (2002) Information matrices with random regressors: application to experimental design. J Stat Plan Inference 108:189–200

    Article  MathSciNet  Google Scholar 

  • Rodríguez C, Ortiz I (2005) D-optimum designs in multi-factor models with heteroscedastic errors. J Stat Plan Inference 128:623–631

    Article  MathSciNet  Google Scholar 

  • Rodríguez C, Ortiz I, Martínez I (2016) A-optimal designs for heteroscedastic multifactor regression models. Commun Stat Theory Methods 45:757–771

    Article  MathSciNet  Google Scholar 

  • Silvey SD (1980) Optimal design. Chapman and Hall, London

    Book  Google Scholar 

  • Stefanski LA (1989) Unbiased estimation of a nonlinear function of a normal mean with application to measurement error models. Commun Stat Theory Methods 18:4335–4358

    Article  MathSciNet  Google Scholar 

  • Wong WK (1994) G-optimal designs for multi-factor experiments with heteroscedastic errors. J Stat Plan Inference 40:127–133

    Article  MathSciNet  Google Scholar 

  • Wong WK (1995) On the equivalence of \(D\) and \(G\)-optimal designs in heteroscedastic models. Stat Probab Lett 25:317–321

    Article  MathSciNet  Google Scholar 

  • Zavala AZ, Bolfarine H, Castro DM (2007) Consistent estimation and testing in heteroscedastic polynomial errors-in-variables models. Ann Inst Stat Math 59:515–530

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Xian Yue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China under Grants 11971318, 11871143.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, MJ., Yue, RX. Locally D-optimal designs for heteroscedastic polynomial measurement error models. Metrika 83, 643–656 (2020). https://doi.org/10.1007/s00184-019-00745-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-019-00745-2

Keywords

Navigation