Skip to main content
Log in

Regression function estimation on non compact support in an heteroscesdastic model

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

We study the problem of nonparametric regression function estimation on non necessarily compact support in a heteroscedastic model with non necessarily bounded variance. A collection of least squares projection estimators on m-dimensional functional linear spaces is built. We prove new risk bounds for the estimator with fixed m and propose a new selection procedure relying on inverse problems methods leading to an adaptive estimator. Contrary to more standard cases, the data-driven dimension is chosen within a random set and the penalty is random. Examples and numerical simulations results show that the procedure is easy to implement and provides satisfactory estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, New York (Ninth dover printing, tenth gpo printing edition)

    MATH  Google Scholar 

  • Arlot S (2007) Rééchantillonnage et sélection de modèles. Ph.D. thesis, Université Paris Sud

  • Baraud Y (2002) Model selection for regression on a random design. ESAIM Probab Stat 6:127–146

    Article  MathSciNet  Google Scholar 

  • Barron A, Birgé L, Massart P (1999) Risk bounds for model selection via penalization. Probab Theory Relat Fields 113:301–413

    Article  MathSciNet  Google Scholar 

  • Belomestny D, Comte F, Genon-Catalot V (2019) Sobolev–Hermite versus Sobolev nonparametric density estimation on R. Ann Inst Stat Math 71:29–62

    Article  MathSciNet  Google Scholar 

  • Birgé L, Massart P (1998) Minimum contrast estimators on sieves: exponential bounds and rates of convergence. Bernoulli 4:329–375

    Article  MathSciNet  Google Scholar 

  • Birgé L, Massart P (2007) Minimal penalties for Gaussian model selection. Probab Theory Relat Fields 138:33–73

    Article  MathSciNet  Google Scholar 

  • Cohen A, Davenport MA, Leviatan D (2013) On the stability and acuracy of least squares approximations. Found Comput Math 13:819–834

    Article  MathSciNet  Google Scholar 

  • Comte F, Genon-Catalot V (2015) Adaptive Laguerre density estimation for mixed Poisson models. Electron J Stat 9:1112–1148

    MathSciNet  MATH  Google Scholar 

  • Comte F, Genon-Catalot V (2018a) Laguerre and Hermite bases for inverse problems. J Korean Stat Soc 47:273–296

    Article  MathSciNet  Google Scholar 

  • Comte F, Genon-Catalot V (2018b) Regression function estimation as a partly inverse problem. Preprint Hal

  • Comte F, Genon-Catalot V (2019) Drift estimation on non compact support for diffusion models. Preprint Hal

  • Comte F, Rozenholc Y (2002) Adaptive estimation of mean and volatility functions in (auto-)regressive models. Stoch Process Appl 97:111–145

    Article  MathSciNet  Google Scholar 

  • Galtchouk L, Pergamenshchikov S (2009) Adaptive asymptotically efficient estimation in heteroscedastic nonparametric regression. J Korean Stat Soc 38:305–322

    Article  MathSciNet  Google Scholar 

  • Gendre X (2008) Simultaneous estimation of the mean and the variance in heteroscedastic Gaussian regression. Electron J Stat 2:1345–1372

    Article  MathSciNet  Google Scholar 

  • Györfi L, Kohler M, Krzyzak A, Walk H (2002) A distribution-free theory of nonparametric regression, Springer series in statistics. Springer, New York

    Book  Google Scholar 

  • Jin S, Su L, Xiao Z (2015) Adaptive nonparametric regression with conditional heteroskedasticity. Econom Theory 31:1153–1191

    Article  MathSciNet  Google Scholar 

  • Klein T, Rio E (2005) Concentration around the mean for maxima of empirical processes. Ann Probab 33(3):1060–1077

    Article  MathSciNet  Google Scholar 

  • Szegö G (1975) Orthogonal polynomials, 4th edn. American mathematical Society, Colloquium Publications, vol XXIII. American Mathematical Society , Providence

  • Tropp JA (2012) User-friendly tail bounds for sums of random matrices. Found Comput Math 12(4):389–434

    Article  MathSciNet  Google Scholar 

  • Tropp JA (2015) An introduction to matrix concentration inequalities. Found Trends Mach Learn 8(1–2):1–230

    Article  Google Scholar 

  • Tsybakov AB (2009) Introduction to nonparametric estimation, Springer series in statistics. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Comte.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comte, F., Genon-Catalot, V. Regression function estimation on non compact support in an heteroscesdastic model. Metrika 83, 93–128 (2020). https://doi.org/10.1007/s00184-019-00727-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-019-00727-4

Keywords

Navigation