Skip to main content
Log in

A Darling–Erdős-type CUSUM-procedure for functional data

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

The focus of the paper is nonparametric detection of changes in the mean of \(m\)-dependent stationary functional data via a cumulative sum (CUSUM) procedure. We consider a projection-based quasi-maximum likelihood CUSUM-procedure which relies on a Darling–Erdős-type limit theorem. Under mild moment assumptions we investigate the asymptotic properties under the null hypothesis and show consistency under the alternatives of either an abrupt or a gradual change in the mean. The finite sample behavior is illustrated in a small simulation study including an application to temperature data from Hohenpeißenberg (Bavaria, Germany).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aston J, Kirch C (2012a) Detecting and estimating changes in dependent functional data. J Multivar Anal 109:204–220

    Article  MathSciNet  MATH  Google Scholar 

  • Aston J, Kirch C (2012b) Evaluating stationarity via change-point alternatives with applications to fMRI data. Ann Appl Stat 6(4):1906–1948

    Article  MathSciNet  MATH  Google Scholar 

  • Berkes I, Gabrys R, Horváth L, Kokoszka P (2009) Detecting changes in the mean of functional observations. J R Stat Soc Ser B Stat Methodol 71(5):927–946

    Article  MathSciNet  Google Scholar 

  • Bosq D (2000) Linear processes in function spaces: theory and applications. Springer, New York

    Book  Google Scholar 

  • Csörgő M, Horváth L (1997) Limit theorems in change-point analysis. Wiley, Chichester

    Google Scholar 

  • Dauxois J, Pousse A, Romain Y (1982) Asymptotic theory for the principal component analysis of a vector random function: some applications to statistical inference. J Multivar Anal 12(1):136–154

    Article  MathSciNet  MATH  Google Scholar 

  • Dedecker J, Merlevède F (2008) Convergence rates in the law of large numbers for Banach-valued dependent variables. Theory Probab Appl 52(3):416–438

    Article  MathSciNet  MATH  Google Scholar 

  • Ferraty F, Vieu P (2010) Nonparametric functional data analysis: theory and practice. Springer, New York

    Google Scholar 

  • Fremdt S, Horváth L, Kokoszka P, Steinebach J (2014) Functional data analysis with increasing number of projections. J Multivar Anal 124:313–332

    Article  MATH  Google Scholar 

  • Gabrys R, Kokoszka P (2007) Portmanteau test of independence for functional observations. J Am Stat Assoc 102(480):1338–1348

    Article  MathSciNet  MATH  Google Scholar 

  • Gombay E, Horváth L (1996) On the rate of approximations for maximum likelihood tests in change-point models. J Multivar Anal 56(1):120–152

    Article  MATH  Google Scholar 

  • Hörmann S, Kokoszka P (2010) Weakly dependent functional data. Ann Stat 38(3):1845–1884

    Article  MATH  Google Scholar 

  • Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, New York

    Book  MATH  Google Scholar 

  • Horváth L, Kokoszka P, Steinebach J (1999) Testing for changes in multivariate dependent observations with an application to temperature changes. J Multivar Anal 68(1):96–119

    Article  MATH  Google Scholar 

  • Horváth L, Kokoszka P, Reeder R (2012a) Estimation of the mean of functional time series and a two-sample problem. arXiv:1105.0019v1.

  • Horváth L, Kokoszka P, Reeder R (2012b) Estimation of the mean of functional time series and a two-sample problem. J R Stat Soc Ser B Stat Methodol 75(1):103–122

    Google Scholar 

  • Hušková M (1998) Estimators in the location model with gradual changes. Comment Math Univ Carolin 39(1):147–157

    MathSciNet  MATH  Google Scholar 

  • Kuelbs J, Philipp W (1980) Almost sure invariance principles for partial sums of mixing \({B}\)-valued random variables. Ann Probab 8(6):1003–1036

    Article  MathSciNet  MATH  Google Scholar 

  • Ledoux M, Talagrand M (1991) Probability in Banach spaces: isoperimetry and processes. Springer, Berlin

    Book  MATH  Google Scholar 

  • Lifshits M (1984) Absolute continuity of functionals of supremum type for Gaussian processes. J Math Sci 27(5):3103–3112

    Article  MATH  Google Scholar 

  • Padgett W, Taylor R (1976) Almost sure convergence of weighted sums of random elements in Banach spaces. In: Lecture Notes in Mathematics 526, Springer, New York

  • Piterbarg V (2012) Asymptotic methods in the theory of Gaussian processes and fields. Amer Math Soc

  • Ramsay J, Silverman B (2005) Functional data analysis. Springer, New York

    Google Scholar 

  • Ramsay J, Hooker G, Graves S (2009) Functional data analysis with R and MATLAB. Springer, New York

    Book  MATH  Google Scholar 

  • Tsirelson B (1976) The density of the distribution of the maximum of a Gaussian process. Theory Probab Appl 20(4):847–856

    Article  Google Scholar 

  • Vostrikova L (1981) Detection of a “disorder” in a Wiener process. Theory Probab Appl 26(2):356–362

    Google Scholar 

  • Zhou J (2011) Maximum likelihood ratio test for the stability of sequence of Gaussian random processes. Comput Stat Data Anal 55(6):2114–2127

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the referees for thorough reviews, corrections and valuable suggestions. We acknowledge the data providers in the ECA&D project. Klein Tank, A. M. G. and Coauthors, 2002. Daily dataset of twentieth-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. of Climatol., 22, 1441–1453. Data and metadata available at http://www.ecad.eu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Torgovitski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torgovitski, L. A Darling–Erdős-type CUSUM-procedure for functional data. Metrika 78, 1–27 (2015). https://doi.org/10.1007/s00184-014-0487-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-014-0487-7

Keywords

Navigation