Skip to main content
Log in

Extension of some important identities in shrinkage-pretest strategies

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

In this paper, we establish three identities which play a crucial role in deriving the asymptotic distributional risk function and the asymptotic distributional bias of a large class of estimators of a matrix parameter. In particular, we generalize the results in Judge and Bock (The statistical implication of pre-test and Stein-rule estimators in econometrics. North Holland, Amsterdam, 1978). The established results are useful in risk analysis of a class of Stein-rule type matrix estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed SE, Hussein A, Nkurunziza S (2010) Robust inference strategy in the presence of measurements error. Stat Prob Lett 80:726–732

    Article  MathSciNet  MATH  Google Scholar 

  • Izenman AJ (2008) Modern multivariate statistical techniques: regression, classification, and manifold learning. Springer Science +Business Media, LLC, New York

    Book  Google Scholar 

  • Judge GG, Bock ME (1978) The statistical implication of pre-test and Stein-rule estimators in econometrics. North Holland, Amsterdam

    Google Scholar 

  • Nkurunziza S (2012a) The risk of pretest and shrinkage estimators. Stat J Theor Appl Stat 46(3):305–312

    Google Scholar 

  • Nkurunziza S (2012b) Shrinkage strategies in some multiple multi-factor dynamical systems. ESAIM Probab Stat 16:139–150

    Google Scholar 

  • Nkurunziza S, Ahmed SE (2010) Shrinkage drift parameter estimation for multi-factor Ornstein-Uhlenbeck processes. Applied Stoch Models Bus Ind 26(2):103–124

    Google Scholar 

  • Nkurunziza S, Ahmed SE (2011) Estimation strategies for the regression coefficient parameter matrix in multivariate multiple regression. Statistica Neerlandica 65(4):387–406

    Article  MathSciNet  Google Scholar 

  • Sen PK, Saleh AKME (1987) On preliminary test and shrinkage M-estimation in linear models. Ann Stat 15(4):1580–1592

    Article  MathSciNet  MATH  Google Scholar 

  • Saleh AKMd (2006) Theory of preliminary test and stein-type estimation with applications. Wiley, Hoboken

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the financial support received from Natural Sciences and Engineering Research Council of Canada. Also, the author is thankful to anonymous referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sévérien Nkurunziza.

Appendix

Appendix

1.1 Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1

Since \(\varvec{\Xi }_{1}^{\frac{1}{2}}\varvec{\Upsilon }\varvec{\Xi }_{1}^{\frac{1}{2}}\) and \(\varvec{\Xi }_{2}^{\frac{1}{2}}\varvec{\Lambda }\varvec{\Xi }_{2}^{\frac{1}{2}}\) are symmetric idempotent matrices, there exist orthogonal matrices \(\varvec{Q}_{1}\) and \(\varvec{Q}_{2}\) such that

$$\begin{aligned} \varvec{Q}_{1}\varvec{\Xi }_{1}^{\frac{1}{2}}\varvec{\Upsilon }\varvec{\Xi }_{1}^{\frac{1}{2}}\varvec{Q}_{1}^{\prime }=\left( \begin{array}{cc} \varvec{I}_{p}&\varvec{0} \\ \varvec{0}&\varvec{0} \\ \end{array} \right)\quad { } \text{ and} \quad { } \varvec{Q}_{2}\varvec{\Xi }_{2}^{\frac{1}{2}}\varvec{\Lambda }\varvec{\Xi }_{2}^{\frac{1}{2}}\varvec{Q}_{2}^{\prime }=\left( \begin{array}{cc} \varvec{I}_{q_{1}}&\varvec{0} \\ \varvec{0}&\varvec{0} \\ \end{array} \right) . \end{aligned}$$
(5.1)

Moreover, let \(\varvec{V}=\varvec{Q}_{1}\varvec{\Xi }_{1}^{\frac{1}{2}}\varvec{X} \varvec{\Xi }_{2}^{\frac{1}{2}}\varvec{Q}^{\prime }_{2}\). Then, \(\text{ Vec}\left(\varvec{V}\right)=(\varvec{Q}_{1}\varvec{\Xi }_{1}^{\frac{1}{2}}\otimes \varvec{Q}_{2}\varvec{\Xi }_{2}^{\frac{1}{2}})\text{ Vec}\left(\varvec{X}\right)\) and hence,

$$\begin{aligned} \text{ Vec}\left(\varvec{V}\right)=\left( \begin{array}{c} \varvec{V}_{1} \\ \varvec{V}_{2} \\ \end{array} \right)\sim \fancyscript{N}_{q\times k}\left(\left( \begin{array}{c} \varvec{\mu }_{1} \\ \varvec{0} \\ \end{array} \right),\,\,\varvec{\Sigma }_{v}\right)\!, \end{aligned}$$
(5.2)

with

$$\begin{aligned} \varvec{\mu }_{1}&= \left[\varvec{I}_{pq},\,\varvec{0}\right]\, \text{ E}\left(\text{ Vec}\left(\varvec{V}\right)\right) =\left(\left[\varvec{I}_{p},\,\varvec{0}\right]\otimes \varvec{I}_{q}\right)\,\left(\varvec{Q}_{1}\varvec{\Xi }_{1}^{\frac{1}{2}} \otimes \varvec{Q}_{2}\varvec{\ Xi }_{2}^{\frac{1}{2}}\right) \text{ Vec}\left(\varvec{M}\right)\nonumber \\ \varvec{\Sigma }_{v}&= \left(\begin{array}{cc} \varvec{I}_{p}&\varvec{0} \\ \varvec{0}&\varvec{0} \\ \end{array} \right)\otimes \left(\begin{array}{cc} \varvec{I}_{q_{1}}&\varvec{0} \\ \varvec{0}&\varvec{0} \\ \end{array} \right). \end{aligned}$$
(5.3)

Therefore, from (5.2), \( \text{ trace}\left(\varvec{\Xi }_{2}\varvec{X}^{\prime }\varvec{\Xi }_{1}\varvec{\Upsilon }\varvec{\Xi }_{1}\varvec{X}\right) =\text{ trace}(\varvec{V}^{\prime }\varvec{Q}_{1}\varvec{\Xi }_{1}^{\frac{1}{2}} \varvec{\Upsilon }\varvec{\Xi }_{1}^{\frac{1}{2}}\varvec{Q}_{1}^{\prime }\varvec{V}) =\varvec{V}_{1}^{\prime }\varvec{V}_{1}.\) Hence, \(\text{ Vec}\left(\text{ E}\left[\phi \left( \text{ trace}\left(\varvec{\Xi }_{2}\varvec{X}^{\prime }\varvec{\Xi }_{1}\varvec{\Upsilon }\varvec{\Xi }_{1}\varvec{X}\right)\right)\varvec{X}\right]\right)= \text{ E}[\phi (\varvec{V}_{1}^{\prime }\varvec{V}_{1}\,) (\varvec{\Xi }_{1}^{-\frac{1}{2}}\varvec{Q}^{\prime }_{1}\otimes \) \( \varvec{\Xi }_{2}^{-\frac{1}{2}}\varvec{Q}^{\prime }_{2})\text{ Vec}(\varvec{V})]\) and then,

$$\begin{aligned}&\text{ Vec}\left(\text{ E}\left[\phi \left( \text{ trace}\left(\varvec{\Xi }_{2}\varvec{X}^{\prime }\varvec{\Xi }_{1}\varvec{\Upsilon }\varvec{\Xi }_{1}\varvec{X}\right)\right)\varvec{X}\right]\right) =\left(\varvec{\Xi }_{1}^{-\frac{1}{2}}\varvec{Q}^{\prime }_{1}\otimes \varvec{\Xi }_{2}^{-\frac{1}{2}}\varvec{Q}^{\prime }_{2}\right)\nonumber \\&\quad { } \times \left(\text{ E}\left[\phi \left(\varvec{V}_{1}^{\prime }\varvec{V}_{1}\,\right)\varvec{V}_{1}\right],\,\text{ E}\left[\phi \left(\varvec{V}_{1}^{\prime }\varvec{V}_{1}\,\right) \varvec{V}_{2}\right]\right)^{\prime }. \end{aligned}$$
(5.4)

Also, from (5.2) and (5.3), \(\text{ E}\left(\varvec{V}_{2}\right)=\varvec{0}\) and \(\text{ Var}\left(\varvec{V}_{2}\right)=\varvec{0}\), so \(\varvec{V}_{2}\) is \(\varvec{0}\) with probability one, and then, \(\text{ E}\left[\phi \left(\varvec{V}_{1}^{\prime }\varvec{V}_{1}\,\right) \varvec{V}_{2}\right]=\varvec{0}\). Further, by using Theorem 1 in Judge and Bock (1978), we get

$$\begin{aligned} \text{ E}\left[\phi \left(\varvec{V}_{1}^{\prime }\varvec{V}_{1}\,\right)\varvec{V}_{1}\right] =\varvec{\mu }_{1}\text{ E}\left(\phi \left(\chi ^{2}_{pq_{1}+2}\left(\varvec{\mu }_{1}^{\prime }\varvec{\mu }_{1}\right)\right)\right)\!, \end{aligned}$$
(5.5)

where \(\varvec{\mu }_{1}\) is given by (5.3). Using (5.1)- (5.3), \(\varvec{\mu }_{1}^{\prime }\varvec{\mu }_{1}=\text{ Vec}\left(\varvec{M}\right)^{\prime } \left(\varvec{\Xi }_{1}\varvec{\Upsilon }\varvec{\Xi }_{1}\otimes \varvec{\Xi }_{2}\right) \text{ Vec}\left(\varvec{M}\right)\), i.e.

$$\begin{aligned} \varvec{\mu }_{1}^{\prime }\varvec{\mu }_{1} =\text{ trace}\left(\varvec{M}^{\prime }\varvec{\Xi }_{1}\varvec{\Upsilon }\varvec{\Xi }_{1}\varvec{M}\varvec{\Xi }_{2}\right) =\text{ trace}\left(\varvec{M}^{\prime }\varvec{\Xi }_{1}\varvec{M}\varvec{\Xi }_{2}\right)\!. \end{aligned}$$
(5.6)

Further, combining (5.4) and (5.5), we have

$$\begin{aligned} \text{ Vec}\left(\text{ E}\left[\phi \left( \text{ trace}\left(\varvec{\Xi }_{2}\varvec{X}^{\prime }\varvec{\Xi }_{1}\varvec{\Upsilon }\varvec{\Xi }_{1}\varvec{X}\right)\right)\varvec{X}\right]\right) =\text{ E}\left(\phi \left(\chi ^{2}_{pq_{1}+2}\left(\varvec{\mu }_{1}^{\prime }\varvec{\mu }_{1}\right)\right)\right)\text{ Vec}\left(\varvec{\Upsilon }\varvec{\Xi }_{1}\varvec{M}\right)\!, \end{aligned}$$

and then, \(\text{ Vec}\left(\! \text{ E}\left[\phi \left( \text{ trace}\left(\varvec{\Xi }_{2}\varvec{X}^{\prime }\varvec{\Xi }_{1}\varvec{\Upsilon }\varvec{\Xi }_{1}\varvec{X}\right)\right)\varvec{X}\right]\right)\!=\! \text{ Vec}\!\left(\!\text{ E}\left(\!\phi \left(\!\chi ^{2}_{pq_{1}\!+\!2}\left(\varvec{\mu }_{1}^{\prime }\varvec{\mu }_{1}\right)\right)\right)\varvec{M}\right)\), this completes the proof. \(\square \)

Proof of Theorem 3.2

From the above computations, we have \(\phi ( \text{ trace}(\varvec{\Xi }_{2}\varvec{X}^{\prime }\varvec{\Xi }_{1} \varvec{\Upsilon }\varvec{\Xi }_{1}\varvec{X})) \,{=}\, \phi (\varvec{V}_{1}^{\prime }\varvec{V}_{1})\). Further, as in Theorem 3.1, we have \(\varvec{V}=\varvec{Q}_{1}\varvec{\Xi }_{1}^{\frac{1}{2}}\varvec{X}\varvec{\Xi }_{2}^{\frac{1}{2}}\varvec{Q}^{\prime }_{2}\) where \(\varvec{Q}_{1}\) and \(\varvec{Q}_{2}\) are the same as in (5.1). We have \(\varvec{X}=\varvec{\Xi }_{1}^{-\frac{1}{2}}\varvec{Q}^{\prime }_{1}\varvec{V}\varvec{Q}_{2} \varvec{\Xi }_{2}^{-\frac{1}{2}}\) and hence,

$$\begin{aligned} \varvec{X}^{\prime }\varvec{A}\varvec{X}=\varvec{\Xi }_{2}^{-\frac{1}{2}}\varvec{Q}_{2}\varvec{V}^{\prime }\varvec{Q}_{1}\varvec{\Xi }_{1}^{-\frac{1}{2}} \varvec{A}\varvec{\Xi }_{1}^{-\frac{1}{2}}\varvec{Q}^{\prime }_{1}\varvec{V}\varvec{Q}^{\prime }_{2} \varvec{\Xi }_{2}^{-\frac{1}{2}}. \end{aligned}$$
(5.7)

Therefore, \(\text{ E}\left[\phi \left( \text{ trace}\left(\varvec{\Xi }_{2}\varvec{X}^\prime \varvec{\Xi }_{1}\varvec{\Upsilon }\varvec{\Xi }_{1}\varvec{X}\right)\right) \text{ trace}\left(\varvec{X}^{\prime }\varvec{A}\varvec{X}\right)\right]=\text{ E}[\phi \left(\varvec{V}_{1}^{\prime }\varvec{V}_{1}\,\right)\text{ trace}(\varvec{Q}_{1}\varvec{\Xi }_{1}^{-\frac{1}{2}} \varvec{A}\varvec{\Xi }_{1}^{-\frac{1}{2}}\varvec{Q}^{\prime }_{1}\varvec{V}\varvec{Q}_{2} \varvec{\Xi }_{2}^{-1}\varvec{Q}^{\prime }_{2}\varvec{V}^{\prime })]\). Also, we have \(\text{ trace} (\varvec{Q}_{1}\varvec{\Xi }_{1}^{-\frac{1}{2}} \varvec{A}\varvec{\Xi }_{1}^{-\frac{1}{2}}\varvec{Q}^{\prime }_{1}\varvec{V}\varvec{Q}_{2} \varvec{\Xi }_{2}^{-1}\varvec{Q}^{\prime }_{2}\varvec{V}^{\prime }) =\left(\text{ Vec}\left(\varvec{V}\right)\right)^{\prime } (\varvec{Q}_{1}\varvec{\Xi }_{1}^{-\frac{1}{2}} \varvec{A}\varvec{\Xi }_{1}^{-\frac{1}{2}}\varvec{Q}^{\prime }_{1}\otimes \varvec{Q}_{2}\varvec{\Xi }_{2}^{-1}\varvec{Q}^{\prime }_{2}) \text{ Vec}\left(\varvec{V}\right)\). Further, let

$$\begin{aligned} \left(\varvec{Q}_{1}\varvec{\Xi }_{1}^{-\frac{1}{2}} \varvec{A}\varvec{\Xi }_{1}^{-\frac{1}{2}}\varvec{Q}^{\prime }_{1}\otimes \varvec{Q}_{2}\varvec{\Xi }_{2}^{-1}\varvec{Q}^{\prime }_{2}\right)=\varvec{G}=\left( \begin{array}{cc} \varvec{G}_{11}&\varvec{G}_{12} \\ \varvec{G}_{21}&\varvec{G}_{22} \\ \end{array} \right). \end{aligned}$$
(5.8)

Therefore, \(\left(\text{ Vec}\left(\varvec{V}\right)\right)^{\prime } (\varvec{Q}_{1}\varvec{\Xi }_{1}^{-\frac{1}{2}} \varvec{A}\varvec{\Xi }_{1}^{-\frac{1}{2}}\varvec{Q}^{\prime }_{1}\otimes \varvec{Q}_{2}\varvec{\Xi }_{2}^{-1}\varvec{Q}^{\prime }_{2}) \left(\text{ Vec}\left(\varvec{V}\right)\right) =\varvec{V}_{1}^{\prime }\varvec{G}_{11}\varvec{V}_{1}. \) Further, using Theorem 2 in Judge and Bock (1978), we have

$$\begin{aligned} \text{ E}\left[\phi \left(\varvec{V}_{1}^{\prime }\varvec{V}_{1}\,\right)\varvec{V}_{1}^{\prime }\varvec{G}_{11}\varvec{V}_{1}\right]&= \text{ E}\left[\phi \left(\chi _{pq_{1}+2}^{2}\left( \text{ trace} \left(\varvec{\mu }_{1}^{\prime }\varvec{\mu }_{1}\right)\right)\right)\right] \text{ trace}\left(\varvec{G}_{11}\right)\nonumber \\&\quad + \text{ E}\left[\phi \left(\chi _{pq_{1}+4}^{2}\left(\text{ trace} \left(\varvec{\mu }_{1}^{\prime }\varvec{\mu }_{1}\right)\right)\right)\right]\left(\varvec{\mu }_{1}^{\prime }\varvec{G}_{11}\varvec{\mu }_{1}\right)\!. \nonumber \\ \end{aligned}$$
(5.9)

where

$$\begin{aligned} \varvec{\mu }_{1}^{\prime }\varvec{G}_{11}\varvec{\mu }_{1}= \text{ trace}\left(\varvec{M}^{\prime }\varvec{A}\varvec{M}\right), \quad { } \text{ trace}\left(\varvec{G}_{11}\right) =\text{ trace}\left(\varvec{A}\varvec{\Upsilon }\right) \text{ trace}\left(\varvec{\Xi }_{2}^{-1}\right)\!, \qquad \end{aligned}$$
(5.10)

this completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nkurunziza, S. Extension of some important identities in shrinkage-pretest strategies. Metrika 76, 937–947 (2013). https://doi.org/10.1007/s00184-012-0425-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-012-0425-5

Keywords

Navigation