Skip to main content
Log in

A multiple linear regression model for imprecise information

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

In standard regression analysis the relationship between the (response) variable and a set of (explanatory) variables is investigated. In the classical framework the response is affected by probabilistic uncertainty (randomness) and, thus, treated as a random variable. However, the data can also be subjected to other kinds of uncertainty such as imprecision. A possible way to manage all of these uncertainties is represented by the concept of fuzzy random variable (FRV). The most common class of FRVs is the LR family (LR FRV), which allows us to express every FRV in terms of three random variables, namely, the center, the left spread and the right spread. In this work, limiting our attention to the LR FRV class, we consider the linear regression problem in the presence of one or more imprecise random elements. The procedure for estimating the model parameters and the determination coefficient are discussed and the hypothesis testing problem is addressed following a bootstrap approach. Furthermore, in order to illustrate how the proposed model works in practice, the results of a real-life example are given together with a comparison with those obtained by applying classical regression analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arefi M, Viertl R, Taheri SM (2011) Fuzzy density estimation. Metrika. doi:10.1007/s00184-010-0311-y

  • Arnold BF, Stahlecker P (2010) A surprising property of uniformly best linear affine estimation in linear regression when prior information is fuzzy. J Stat Plan Inference 140: 954–960

    Article  MathSciNet  MATH  Google Scholar 

  • Bargiela A, Pedrycz W, Nakashima T (2007) Multiple regression with fuzzy data. Fuzzy Sets Syst 158: 2169–2188

    Article  MathSciNet  MATH  Google Scholar 

  • Celminš A (1987) Multidimensional least-squares fitting of fuzzy models. Math Model 9: 669–690

    Article  MATH  Google Scholar 

  • Chang PT, Lee ES (1996) A generalized fuzzy weighted least-squares regression. Fuzzy Sets Syst 82: 289–298

    Article  MathSciNet  MATH  Google Scholar 

  • Coppi R, Urso P, Giordani P, Santoro A (2006) Least squares estimation of a linear regression model with LR fuzzy response. Comput Stat Data Anal 51: 267–286

    Article  MathSciNet  MATH  Google Scholar 

  • Diamond P (1988) Fuzzy least squares. Inf Sci 46: 141–157

    Article  MathSciNet  MATH  Google Scholar 

  • Urso P (2003) Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data. Comput Stat Data Anal 42: 47–72

    Article  MathSciNet  MATH  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall, New York

    MATH  Google Scholar 

  • Ferraro MB, Colubi A, González-Rodríguez G, Coppi R (2011) A determination coefficient for a linear regression model with imprecise response. Environmetrics 22: 516–529

    Article  MathSciNet  Google Scholar 

  • Ferraro MB, Coppi R, González-Rodríguez G, Colubi A (2010) A linear regression model for imprecise response. Int J Approx Reason 51: 759–770

    Article  MATH  Google Scholar 

  • González-Rodríguez G, Blanco A, Colubi A, Lubiano MA (2009) Estimation of a simple linear regression model for fuzzy random variables. Fuzzy Sets Syst 160: 357–370

    Article  MATH  Google Scholar 

  • González-Rodríguez G, Colubi A, Gil MA (2011) Fuzzy data treated as functional data: a one-way ANOVA test approach. Comput Stat Data Anal. doi:10.1016/j.csda.2010.06.013

  • Guo P, Tanaka H (2006) Dual models for possibilistic regression analysis. Comput Stat Data Anal 51: 253–266

    Article  MathSciNet  MATH  Google Scholar 

  • Hanss M (2005) Applied fuzzy arithmetic—an introduction with engineering applications. Springer, Berlin

    MATH  Google Scholar 

  • Hastie T, Tibshirani RJ, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, New York

    MATH  Google Scholar 

  • Klir GJ (2006) Uncertainty and information: foundations of generalized information theory. Wiley, New York

    Google Scholar 

  • Körner R, Näther W (1998) Linear regression with random fuzzy variables: extended classical estimates, best linear estimates, least squares estimates. Inf Sci 109: 95–118

    Article  MATH  Google Scholar 

  • Krätschmer V (2006a) Strong consistency of least-squares estimation in linear regression models with vague concepts. J Multivar Anal 97: 633–654

    Article  MATH  Google Scholar 

  • Krätschmer V (2006b) Limit distributions of least squares estimators in linear regression models with vague concepts. J Multivar Anal 97: 1044–1069

    Article  MATH  Google Scholar 

  • Kruse R, Meyer KD (1987) Statistics with vague data. Kluwer, Dortrecht

    Book  MATH  Google Scholar 

  • Lawson CL, Hanson RJ (1995) Solving least squares problems. Classics in applied mathematics 15. SIAM, Philadelphia

  • Liew CK (1976) Inequality constrained least-squares estimation. J Am Stat Assoc 71: 746–751

    Article  MathSciNet  MATH  Google Scholar 

  • Lu J, Wang R (2009) An enhanced fuzzy linear regression model with more flexible spreads. Fuzzy Sets Syst 160: 2505–2523

    Article  MATH  Google Scholar 

  • Näther W (2006) Regression with fuzzy random data. Comput Stat Data Anal 51: 235–252

    Article  MATH  Google Scholar 

  • Näther W, Wünsche A (2007) On the conditional variance of fuzzy random variables. Metrika 65: 109–122

    Article  MathSciNet  MATH  Google Scholar 

  • Puri ML, Ralescu DA (1985) The concept of normality for fuzzy random variables. Ann Probab 13: 1373–1379

    Article  MathSciNet  MATH  Google Scholar 

  • Puri ML, Ralescu DA (1986) Fuzzy random variables. J Math Anal Appl 114: 409–422

    Article  MathSciNet  MATH  Google Scholar 

  • Ramos-Guajardo AB, Colubi A, González-Rodríguez G, Gil MA (2010) One-sample tests for a generalized Fréchet variance of a fuzzy random variable. Metrika 71: 185–202

    Article  MathSciNet  MATH  Google Scholar 

  • Tanaka H, Ishibuchi H, Yoshikawa S (1995) Exponential possibility regression analysis. Fuzzy Sets Syst 69: 305–318

    Article  MathSciNet  MATH  Google Scholar 

  • Tanaka H, Uejima S, Asai K (1982) Linear regression analysis with fuzzy model. IEEE Trans Syst Man Cybern 12: 903–907

    Article  MATH  Google Scholar 

  • Tanaka H, Watada J (1988) Possibilistic linear systems and their application to the linear regression model. Fuzzy Sets Syst 27: 275–289

    Article  MathSciNet  MATH  Google Scholar 

  • Yang MS, Ko CH (1996) On a class of fuzzy c-numbers clustering procedures for fuzzy data. Fuzzy Sets and Syst 84: 49–60

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8: 338–353

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmermann HJ (2001) Fuzzy set theory and its applications. Kluwer, Dordrecht

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Brigida Ferraro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraro, M.B., Giordani, P. A multiple linear regression model for imprecise information. Metrika 75, 1049–1068 (2012). https://doi.org/10.1007/s00184-011-0367-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-011-0367-3

Keywords

Navigation