Skip to main content
Log in

The distribution of the relative arc density of a family of interval catch digraph based on uniform data

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

We study a family of interval catch digraph called proportional-edge proximity catch digraph (PCD) which is also a special type of intersection digraphs parameterized with an expansion and a centrality parameter. PCDs are random catch digraphs that have been developed recently and have applications in classification and spatial pattern analysis. We investigate a graph invariant of the PCDs called relative arc density. We demonstrate that relative arc density of PCDs is a U-statistic and using the central limit theory of U-statistics, we derive the (asymptotic) distribution of the relative arc density of proportional-edge PCD for uniform data in one dimension. We also determine the parameters for which the rate of convergence to asymptotic normality is fastest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Callaert H, Janssen P (1978) The Berry-Esseen theorem for U-statistics. Ann Stat 6: 417–421

    Article  MathSciNet  MATH  Google Scholar 

  • Cannon A, Cowen L (2000) Approximation algorithms for the class cover problem. In: Proceedings of the 6th international symposium on artificial intelligence and mathematics

  • Ceyhan E (2005) An investigation of proximity catch digraphs in delaunay tessellations, also available as technical monograph titled “proximity catch digraphs: auxiliary tools, properties, and applications” by vdm verlag, isbn: 978-3-639-19063-2. PhD thesis, The Johns Hopkins University, Baltimore

  • Ceyhan E (2010) Spatial clustering tests based on domination number of a new random digraph family. Commun Stat Theory Methods, doi:101080/03610921003597211 (to appear)

  • Ceyhan E, Priebe C (2003) Central similarity proximity maps in Delaunay tessellations. In: Proceedings of the joint statistical meeting, statistical computing section, American statistical association

  • Ceyhan E, Priebe CE (2005) The use of domination number of a random proximity catch digraph for testing spatial patterns of segregation and association. Stat Probab Lett 73: 37–50

    Article  MathSciNet  MATH  Google Scholar 

  • Ceyhan E, Priebe CE (2007) On the distribution of the domination number of a new family of parametrized random digraphs. Model Assist Stat Appl 1(4): 231–255

    MathSciNet  Google Scholar 

  • Ceyhan E, Priebe CE, Wierman JC (2006) Relative density of the random r-factor proximity catch digraphs for testing spatial patterns of segregation and association. Comput Stat Data Anal 50(8): 1925–1964

    Article  MathSciNet  MATH  Google Scholar 

  • Ceyhan E, Priebe CE, Marchette DJ (2007) A new family of random graphs for testing spatial segregation. Can J Stat 35(1): 27–50

    Article  MathSciNet  MATH  Google Scholar 

  • Chartrand G, Lesniak L (1996) Graphs & digraphs. Chapman & Hall/CRC Press LLC, Florida

    MATH  Google Scholar 

  • DeVinney J, Priebe CE (2006) A new family of proximity graphs: class cover catch digraphs. Discr Appl Math 154(14): 1975–1982

    Article  MathSciNet  MATH  Google Scholar 

  • DeVinney J, Priebe CE, Marchette DJ, Socolinsky D (2002) Random walks and catch digraphs in classification. http://www.galaxy.gmu.edu/interface/I02/I2002/, Proceedings/DeVinney Jason/DeVinneyJason.paper.pdf, proceedings of the 34th symposium on the interface: computing science and statistics, vol 34

  • Erdős P, Rényi A (1959) On random graphs I. Publ Math (Debrecen) 6: 290–297

    MathSciNet  Google Scholar 

  • Janson S, Łuczak T, Ruciński A (2000) Random graphs. Wiley-Interscience series in discrete mathematics and optimization. Wiley, New York

    Google Scholar 

  • Jaromczyk JW, Toussaint GT (1992) Relative neighborhood graphs and their relatives. Proc IEEE 80: 1502–1517

    Article  Google Scholar 

  • Marchette DJ, Priebe CE (2003) Characterizing the scale dimension of a high dimensional classification problem. Pattern Recogn 36(1): 45–60

    Article  MATH  Google Scholar 

  • Priebe CE, DeVinney JG, Marchette DJ (2001) On the distribution of the domination number of random class cover catch digraphs. Stat Probab Lett 55: 239–246

    Article  MathSciNet  MATH  Google Scholar 

  • Priebe CE, Marchette DJ, DeVinney J, Socolinsky D (2003) Classification using class cover catch digraphs. J Classif 20(1): 3–23

    Article  MathSciNet  MATH  Google Scholar 

  • Priebe CE, Solka JL, Marchette DJ, Clark BT (2003) Class cover catch digraphs for latent class discovery in gene expression monitoring by DNA microarrays. Comput Stat Data Anal Visual 43(4): 621–632

    Article  MathSciNet  MATH  Google Scholar 

  • Prisner E (1994) Algorithms for interval catch digraphs. Discr Appl Math 51: 147–157

    Article  MathSciNet  MATH  Google Scholar 

  • Randles RH, Wolfe DA (1979) Introduction to the theory of nonparametric statistics. Wiley, New York

    MATH  Google Scholar 

  • Sen M, Das S, Roy A, West D (1989) Interval digraphs: an analogue of interval graphs. J Graph Theory 13: 189–202

    Article  MathSciNet  MATH  Google Scholar 

  • Toussaint GT (1980) The relative neighborhood graph of a finite planar set. Pattern Recogn 12(4): 261–268

    Article  MathSciNet  MATH  Google Scholar 

  • Tuza Z (1994) Inequalities for minimal covering sets in sets in set systems of given rank. Discr Appl Math 51: 187–195

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvan Ceyhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceyhan, E. The distribution of the relative arc density of a family of interval catch digraph based on uniform data. Metrika 75, 761–793 (2012). https://doi.org/10.1007/s00184-011-0351-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-011-0351-y

Keywords

Navigation