Skip to main content
Log in

Linear estimation of location and scale parameters using partial maxima

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Consider an i.i.d. sample \({X^*_{1},X^*_{2},\ldots,X^*_{n}}\) from a location-scale family, and assume that the only available observations consist of the partial maxima (or minima) sequence, \({X^*_{1:1},X^*_{2:2},\ldots,X^*_{n:n}}\), where \({X^*_{j:j}=\max\{ X^*_1, \ldots,X^*_j \}}\). This kind of truncation appears in several circumstances, including best performances in athletics events. In the case of partial maxima, the form of the BLUEs (best linear unbiased estimators) is quite similar to the form of the well-known Lloyd’s (in Biometrica 39:88–95, 1952) BLUEs, based on (the sufficient sample of) order statistics, but, in contrast to the classical case, their consistency is no longer obvious. The present paper is mainly concerned with the scale parameter, showing that the variance of the partial maxima BLUE is at most of order O(1/ log n), for a wide class of distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Arnold BC, Balakrishnan N, Nagaraja HN (1992) A first course in order statistics. Wiley, New York

    MATH  Google Scholar 

  • Arnold BC, Balakrishnan N, Nagaraja HN (1998) Records. Wiley, New York

    Book  MATH  Google Scholar 

  • Bai Z, Sarkar SK, Wang W (1997) Positivity of the best unbiased L-estimator of the scale parameter with complete or selected order statistics from location-scale distribution. Stat Probab Lett 32: 181–188

    Article  MathSciNet  MATH  Google Scholar 

  • Bagnoli M, Bergstrom T (2005) Log-concave probability and its applications. Econ Theory 26: 445–469

    Article  MathSciNet  MATH  Google Scholar 

  • Balakrishnan N, Papadatos N (2002) The use of spacings in the estimation of a scale parameter. Stat Probab Lett 57: 193–204

    Article  MathSciNet  MATH  Google Scholar 

  • Berger M, Gulati S (2001) Record-breaking data: a parametric comparison of the inverse-sampling and the random-sampling schemes. J Stat Comput Simul 69: 225–238

    Article  MathSciNet  MATH  Google Scholar 

  • Burkschat M (2009) Multivariate dependence of spacings of generalized order statistics. J Multivariate Anal 100: 1093–1106

    Article  MathSciNet  MATH  Google Scholar 

  • Chernoff H, Gastwirth JL, Johns MV Jr (1967) Asymptotic distributions of linear combinations of functions of order statistics with applications to estimation. Ann Math Stat 38: 52–72

    Article  MathSciNet  MATH  Google Scholar 

  • Dasgupta S, Sarkar SK (1982) On TP2 and log-concavity. In: Inequalities in statistics and probability, IMS Lecture Notes-Monograph Series, vol 5, pp 54–58

  • David HA (1981) Order statistics, 2nd ed. Wiley, New York

    MATH  Google Scholar 

  • David HA, Nagaraja HN (2003) Order statistics, 3rd ed. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Galambos J (1978) The asymptotic theory of extreme order statistics. Wiley, Belmont

    MATH  Google Scholar 

  • Graybill FA (1969) Introduction to matrices with applications in statistics. Wadsworth, Belmont

    Google Scholar 

  • Gupta AK (1952) Estimation of the mean and standard deviation of a normal population from a censored sample. Biometrika 39: 260–273

    MathSciNet  MATH  Google Scholar 

  • Hoeffding W (1940) Masstabinvariante korrelations-theorie. Scrift Math Inst Univ Berlin 5: 181–233

    Google Scholar 

  • Hofmann G, Nagaraja HN (2003) Fisher information in record data. Metrika 57: 177–193

    Article  MathSciNet  Google Scholar 

  • Jones MC, Balakrishnan N (2002) How are moments and moments of spacings related to distribution functions?. J Stat Plann Inference (C.R. Rao 80th birthday felicitation volume, Part I) 103: 377–390

    MathSciNet  MATH  Google Scholar 

  • Lehmann EL (1966) Some concepts of dependence. Ann Math Stat 37: 1137–1153

    Article  MathSciNet  MATH  Google Scholar 

  • Lloyd EH (1952) Least-squares estimation of location and scale parameters using order statistics. Biometrika 39: 88–95

    MathSciNet  MATH  Google Scholar 

  • Mann NR (1969) Optimum estimators for linear functions of location and scale parameters. Ann Math Stat 40: 2149–2155

    Article  MATH  Google Scholar 

  • Papadatos N (2001) Distribution and expectation bounds on order statistics from possibly dependent vatiates. Stat Probab Lett 54: 21–31

    Article  MathSciNet  MATH  Google Scholar 

  • Parzen E (1979) Nonparametric statistical data modeling (with comments by Tukey JW, Welsch RE, Eddy WF, Lindley DV, Tarter ME, Crow EL, and a rejoinder by the author). J Am Stat Assoc 74: 105–131

    Article  MathSciNet  MATH  Google Scholar 

  • Prèkopa A (1973) On logarithmic concave measures and functions. Act Sci Math (Szeged) 34: 335–343

    MATH  Google Scholar 

  • Pyke R (1965) Spacings (with Discussion). J R Stat Soc Ser B 27: 395–449

    MathSciNet  MATH  Google Scholar 

  • Pyke R (1980) The asymptotic behavior of spacings under Kakutani’s model for interval subdivision. Ann Probab 8: 157–163

    Article  MathSciNet  MATH  Google Scholar 

  • Resnick SI (1987) Extreme values, regular variation, and point processes. Springer, New York

    MATH  Google Scholar 

  • Samaniego FJ, Whitaker LR (1986) On estimating population characteristics from record-breaking observations I. Parametric results. Naval Res Log Quart 33: 531–543

    Article  MathSciNet  MATH  Google Scholar 

  • Samaniego FJ, Whitaker LR (1988) On estimating population characteristics from record-breaking observations II. Nonparametric results. Naval Res Log 35: 221–236

    Article  MathSciNet  MATH  Google Scholar 

  • Sarkadi K (1985) On an estimator of the scale parameter. Stat Decis Suppl 2: 231–236

    MathSciNet  Google Scholar 

  • Sengupta D, Nanda AK (1999) Log-concave and concave distributions in reliability. Naval Res Log 46: 419–433

    Article  MathSciNet  MATH  Google Scholar 

  • Shao J (2005) Mathematical statistics: exercises and solutions. Springer, New York

    MATH  Google Scholar 

  • Smith RL (1988) Forecasting records by maximum likelihood. J Am Stat Assoc 83: 331–338

    Article  Google Scholar 

  • Stigler SM (1974) Linear functions of order statistics with smooth weight functions. Ann Stat 2: 676–693 Correction 7, 466

    Article  MathSciNet  MATH  Google Scholar 

  • Tryfos P, Blackmore R (1985) Forecasting records. J Am Stat Assoc 80: 46–50

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nickos Papadatos.

Additional information

Devoted to the memory of my six-years-old, little daughter, Dionyssia, who leaved us on August 25, 2010, at Cephalonia island.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadatos, N. Linear estimation of location and scale parameters using partial maxima. Metrika 75, 243–270 (2012). https://doi.org/10.1007/s00184-010-0325-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-010-0325-5

Keywords

Navigation