Skip to main content
Log in

A Cramér-type large deviation theorem for sums of functions of higher order non-overlapping spacings

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Let U 1, U 2, . . . , U n–1 be an ordered sample from a Uniform [0,1] distribution. The non-overlapping uniform spacings of order s are defined as \({G_{i}^{(s)} =U_{is} -U_{(i-1)s}, i=1,2,\ldots,N^\prime, G_{N^\prime+1}^{(s)} =1-U_{N^\prime s}}\) with notation U 0 = 0, U n = 1, where \({N^\prime=\left\lfloor n/s\right\rfloor}\) is the integer part of n/s. Let \({ N=\left\lceil n/s\right\rceil}\) be the smallest integer greater than or equal to n/s, f m (u), m = 1, 2, . . . , N, be a sequence of real-valued Borel-measurable functions. In this article a Cramér type large deviation theorem for the statistic \({f_{1,n} (nG_{1}^{(s)})+\cdots+f_{N,n} (nG_{N}^{(s)} )}\) is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1972) A handbook of mathematical functions with formulas, graphs and mathematical tables. Dover, New York

    Google Scholar 

  • Beirlant J, Janssen P, Veraverbeke N (1991) On the asymptotic normality of functions of uniform spacings. Can J Stat 19: 93–101

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya PH, Rao RR (1976) Normal approximation and asymptotic expansions. Wiley, New York

    MATH  Google Scholar 

  • Darling DA (1953) On a class of problems related to the random division of an interval. Ann Math Stat 24: 239–253

    Article  MathSciNet  MATH  Google Scholar 

  • Deheuvels P (1985) Spacings and applications. Probability and statistics decisions theory. V.A 9F. Konecny, J. Mogyorodi, W. Wetz (eds) Reidel.Dordrecht., pp 1–30

  • Deheuvels P, Derzko G (2003) Exact laws for sums of logarithms of uniform spacings. Aust J Stat 32: 29–47

    Google Scholar 

  • Del Pino GE (1979) On the asymptotic distribution of k-spacings with applications to goodness-of-fit tests. Ann Stat 7: 1058–1065

    Article  MathSciNet  MATH  Google Scholar 

  • Does RJMM, Helmers R, Klaassen CAJ (1987) On the Edgworth expansion for the sum of function of uniform spacings. J Stat Plan Inference 17: 149–157

    Article  MathSciNet  MATH  Google Scholar 

  • Does RJMM, Helmers R, Klaassen CAJ (1984) The Berry–Esseen theorem for function of uniform spacings. Z Wahrscheinlichkeitstheorie verw Gebiete 65: 461–474

    Article  MATH  Google Scholar 

  • Fikhtengol’ts GM (1969) A course of differential and 10 integral calculus, (In Russian). Nauka, Moscow

    Google Scholar 

  • Greenwood M (1946) The statistical study of infectious diseases. J R Stat Soc Ser A 109: 85–1105

    Article  MathSciNet  Google Scholar 

  • Holst L, Rao JS (1981) Asymptotic spacings theory with applications to the two sample problem. Can J Stat 9: 603–610

    Article  MathSciNet  Google Scholar 

  • Jammalamadaka SR, Goria MN (2004) A test of goodness-of-fit based on Gini’s index of spacings. Stat Probab Lett 68: 177–187

    Article  MathSciNet  MATH  Google Scholar 

  • Jammalamadaka SR, Kuo M (1984) Asymptotic results on the Greenwood statistics and some of its generalizations. J R Stat S Doc Ser B 46: 228–237

    MathSciNet  Google Scholar 

  • Jammalamadaka SR, Wells MT (1988) A test of goodness-of-fit based on extreme spacings with some efficiency comparisons. Metrika 35: 223–232

    Article  MathSciNet  MATH  Google Scholar 

  • Jammalamadaka SR, Zhou X, Tiwari RC (1989) Asymptotic efficiencies of spacings tests for goodness- of-fit. Metrika 36: 355–377

    Article  MathSciNet  MATH  Google Scholar 

  • Kallenberg WCM (1983) Intermediate efficiency. Ann Stat 11: 170–182

    Article  MathSciNet  MATH  Google Scholar 

  • Kalandarov UN (2001) About asymptotic expansion for sum of functions of uniform spacings. Uzbek J Math 10: 42–50

    Google Scholar 

  • Le Cam (1958) Un theoreme sur la division d’une interwalle par des points pres au hasard. Publ Inst Stat Univ Paris 7: 7–16

    Google Scholar 

  • Mirakhmedov ShA, Kalandarov UN (1998) Non-uniform estimation of the remainder term in CLT for the sum of functions of uniform spacings. Turkish J Math 22: 53–60

    MathSciNet  MATH  Google Scholar 

  • Mirakhmedov ShA (2005) Lower estimation of the remainder term in the CLT for a sum of the functions of k-spacings. Stat Probab Lett 73: 411–424

    Article  MathSciNet  MATH  Google Scholar 

  • Mirakhmedov ShM (2009) On the Greenwood goodness-of-fit test. J Stat Plan Inference (To be appeared)

  • Mirakhmedov ShM, Naeem M (2008a) Asymptotical efficiency of the goodness-of-fit test based on extreme k-spacings statistic. J Appl Prob Stat Dixie W Corp USA 3(1): 43–53

    MathSciNet  Google Scholar 

  • Mirakhmedov ShM, Naeem M (2008b) Asymptotic properties of the goodness-of-fit tests based on spacings. Pak J Stat 24(4): 253–268

    MathSciNet  Google Scholar 

  • Mirakhmedov ShM, Naeem M (2008c) Asymptotic efficiency of the Greenwood’s goodness-of-fit test. Abstracts of Conference on ordered statistical data and its applications Aachen (Germany), March 7–8, 2008, pp 40–42

  • Moran PAP (1984) An introduction to probability theory. Oxford University Press, Oxford, p 550

    Google Scholar 

  • Morse PM, Feshbach H (1953) Methods of theoretical physics, part 1. McGraw-Hill, New York, pp 411–413

    Google Scholar 

  • Nagaev AV, Goldfield SM (1989) The limit theorem for the uniform distribution on the circumference. Wiss Z Tech Univ Dresden 38(H.1): 163–165

    MathSciNet  Google Scholar 

  • Petrov VV (1975) Sums of independent random variables. Springer, New York

    Google Scholar 

  • Pyke R (1965) Spacings. J R Stat Soc Ser B27: 395–449

    MathSciNet  Google Scholar 

  • Pyke R (1972) Spacings revisited. In: Proceedings of 6th Berkeley symposium mathmatical statistics probality, vol 1, pp 417–427

  • Rao JS (1972) Bahadur efficiencies of some tests for uniformity on the circle. Ann Math Stat 43: 468–479

    Article  Google Scholar 

  • Rao JS, Sethuraman J (1975) Weak convergence of empirical distribution functions of random variables subject to perturbations and scale factors. Ann Stat 3: 299–313

    Article  MathSciNet  MATH  Google Scholar 

  • Saulis L, Statulevicius V (1991) Limit theorems for large deviations. Kluwer, Dordrecht, p 232

    MATH  Google Scholar 

  • Zhou Xian, Jammalamadaka SR (1989) Bahadur efficiencies of spacings tests for goodness-of-fit. Ann Inst Stat Math 28: 783–786

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherzod M. Mirakhmedov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirakhmedov, S.M., Tirmizi, S.I.A. & Naeem, M. A Cramér-type large deviation theorem for sums of functions of higher order non-overlapping spacings. Metrika 74, 33–54 (2011). https://doi.org/10.1007/s00184-009-0288-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-009-0288-6

Keywords

Navigation