Skip to main content
Log in

On bootstrapping periodic random arrays with increasing period

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

The aim of the paper is to determine when the periodic block bootstrap, procedure introduced by Chan et al. (Technometrics 46(2):215–224, 2004), can be applied to arrays of random variables. Formal consistency is obtained under α-mixing or m-dependence conditions together with the assumption that the length of the period tends to infinity. On the other hand, if the period is constant, inconsistency is shown. The performance of periodic block bootstrap is also compared in simulations with moving block bootstrap. It is suggested that for the case of long-period data the first method is more effective and much more stable with respect to the length of the block size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araujo A, Giné E (1980) Central limit theorem for real and Banach valued random variables. Wiley, New York

    MATH  Google Scholar 

  • Berk K (1973) A central limit theorem for m-dependent random variables with unbounded m. Ann Probab 1: 352–354

    Article  MATH  MathSciNet  Google Scholar 

  • Bloomfield P, Hurd H, Lund R (1994) Periodic correlation in stratospheric ozone time series. J Time Ser Anal 15(2): 127–150

    Article  MATH  MathSciNet  Google Scholar 

  • Carlstein E (1986) The use of subseries values for estimating the variance of a general statitics from a stationary sequence. Ann Stat 14(14): 1171–1179

    Article  MATH  MathSciNet  Google Scholar 

  • Chan V, Lahiri SN, Meeker W (2004) Block bootstrap estimation of the distribution of cumulative outdoor degradation. Technometrics 46(2): 215–224

    Article  MathSciNet  Google Scholar 

  • Dahlhaus R (1997) Fitting time series models to nonstationary processes. Ann Stat 25(1): 1–37

    Article  MATH  MathSciNet  Google Scholar 

  • Gardner W, Napolitano A, Paura L (2006) Cyclostationarity: half a century of research. Signal Proc 86(4): 639–697

    Article  MATH  Google Scholar 

  • Gerr N, Hurd H (1990) Graphical methods for determining the presence of periodic correlation. J Time Ser Anal 12: 337–350

    MathSciNet  Google Scholar 

  • Gladyshev EG (1961) Periodically correlated random sequences. Sov Math 2: 383–388

    Google Scholar 

  • Gonçalves S, White H (2002) The bootstrap of the mean for dependent heterogeneous arrays. Econ Theor 18: 1367–1384

    MATH  Google Scholar 

  • Hurd H (1989) Nonparametric time series analysis for periodically correlated processes. IEEE Trans Inf Theor 35: 350–359

    Article  MATH  MathSciNet  Google Scholar 

  • Hurd H, Leśkow J (1992) Strongly consistent and asymptotically normal estimation of the covariance for almost periodically correlated processes. Stat Decis 10: 201–225

    MATH  Google Scholar 

  • Kim TY (1994) Moment bounds for non-stationary dependent sequences. J Appl Probab 31: 731–742

    Article  MATH  MathSciNet  Google Scholar 

  • Künsch H (1989) The jackknife and the bootstrap for general stationary observations. Ann Stat 17(3): 1217–1241

    Article  MATH  Google Scholar 

  • Lahiri SN (1999) Theoretical comparison of block bootstrap methods. Ann Stat 27(1): 386–404

    Article  MATH  Google Scholar 

  • Liu RY, Singh K (1992) Moving blocks jacknife and bootstrap capture weak dependence. In: LePage R, Billard L (eds) Exploring the limits of bootstrap. Wiley, New York, pp 225–248

    Google Scholar 

  • Politis D, Romano J (1994) Large sample confidence regions based on subsamples under minimal assumptions. Ann Stat 22: 2031–2050

    Article  MATH  MathSciNet  Google Scholar 

  • Politis D, Romano J, Wolf M (1999) Subsampling. Springer, New York

    MATH  Google Scholar 

  • Radulović D (1996) The bootstrap of the mean for strong mixing sequences under minimal conditions. Stat Prob Lett 28: 65–72

    Article  MATH  Google Scholar 

  • Romano J, Wolf M (2000) A more general central limit theorem for m-dependent random variables with unbounded m. Stat Prob Lett 47: 115–124

    Article  MATH  MathSciNet  Google Scholar 

  • Singh K (1981) On the asymptotic accuracy of the efron’s bootstrap. Ann Stat 9: 1187–1195

    Article  MATH  Google Scholar 

  • Sjoestedt S (2000) Resampling m-dependent random variables with application to forecasting. Scand J Stat 27: 543–561

    Article  MATH  Google Scholar 

  • Synowiecki R (2007) Consistency and application of moving block bootstrap for nonstationary time series with periodic and almost periodic structure. Bernoulli 13(4): 1151–1178

    Article  MATH  MathSciNet  Google Scholar 

  • Vecchia A, Ballerini R (1991) Testing for periodic autocorrelations in seasonal time series data. Biometrika 78: 53–63

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Synowiecki.

Additional information

Work partially supported by the following grants: NATO Collaborative Linkage Grant no. ICS.NUKR.CLG 983335, AGH local grant no. 10.420.03, EC FP6 Marie Curie ToK programme SPADE-2 at IMPAN, Warsaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leśkow, J., Synowiecki, R. On bootstrapping periodic random arrays with increasing period. Metrika 71, 253–279 (2010). https://doi.org/10.1007/s00184-008-0228-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-008-0228-x

Keywords

Navigation