Skip to main content
Log in

Central limit theorem for linear eigenvalue statistics of the Wigner and the sample covariance random matrices

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

We consider n × n real symmetric random matrices n −1/2 W with independent (modulo symmetry condition) entries and the (null) sample covariance matrices n −1 A T A with independent entries of m × n matrix A. Assuming first that the 4th cumulant (excess) κ 4 of entries of W and A is zero and that their 4th moments satisfy a Lindeberg type condition, we prove that linear statistics of eigenvalues of the above matrices satisfy the central limit theorem (CLT) as n → ∞, m → ∞, \({m/n\rightarrow c\in[0,\infty)}\) with the same variance as for Gaussian matrices if the test functions of statistics are smooth enough (essentially of the class \({\mathbb{C}^5}\)). This is done by using a simple “interpolation trick”. Then, by using a more elaborated techniques, we prove the CLT in the case of non-zero excess of entries for essentially \({\mathbb{C}^4}\) test function. Here the variance contains additional term proportional to κ 4. The proofs of all limit theorems follow essentially the same scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson GW, Zeitouni O (2006) CLT for a band matrix model. Probab Theory Related Fields 134: 283–338

    Article  MATH  MathSciNet  Google Scholar 

  • Bai ZD (1999) Methodologies in spectral analysis of large dimensional random matrices: a review. Stat Sin 9: 611–677

    MATH  Google Scholar 

  • Bai ZD, Silverstein JW (2004) CLT for linear spectral statistics of large dimensional sample covariance matrices. Ann Prob 32: 553–605

    Article  MATH  MathSciNet  Google Scholar 

  • Bogachev VI (1998) Gaussian measures. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Cabanal-Duvillard T (2001) Fluctuations de la loi empirique de grandes matrices aléatoires. Ann Inst Henri Poincaré, Probab Stat 37: 373–402

    Article  MATH  MathSciNet  Google Scholar 

  • Chatterjee S, Bose A (2004) A new method for bounding rates of convergence of empirical spectral distributions. J Theor Probab 17: 1003–1019

    Article  MATH  MathSciNet  Google Scholar 

  • Costin O, Lebowitz JL (1995) Gaussian fluctuations in random matrices. Phys Rev Lett 75: 69–72

    Article  Google Scholar 

  • Diaconis P, Evans S (2001) Linear functionals of eigenvalues of random matrices. Trans AMS 353: 2615–2633

    Article  MATH  MathSciNet  Google Scholar 

  • Girko V (2001) Theory of stochastic canonical equations, vols I, II. Kluwer, Dordrecht

    Google Scholar 

  • Guionnet A (2002) Large deviations, upper bounds, and central limit theorems for non-commutative functionals of Gaussian large random matrices. Ann Inst Henri Poincaré, Probab Stat 38: 341–384

    Article  MATH  MathSciNet  Google Scholar 

  • Johansson K (1998) On fluctuations of eigenvalues of random hermitian matrices. Duke Math J 91: 151–204

    Article  MATH  MathSciNet  Google Scholar 

  • Jonsson D (1982) Some limit theorems for the eigenvalues of a sample covariance matrix. J Multivariate Anal 12: 1–38

    Article  MATH  MathSciNet  Google Scholar 

  • Keating JP, Snaith NC (2000) Random matrix theory and ζ(1/2 + it). Comm Math Phys 214: 57–89

    Article  MATH  MathSciNet  Google Scholar 

  • Khoruzhenko B, Khorunzhy A, Pastur L (1995) 1/n-corrections to the Green functions of random matrices with independent entries. J Phys A Math General 28: L31–L35

    Article  MATH  MathSciNet  Google Scholar 

  • Marchenko V, Pastur L (1967) The eigenvalue distribution in some ensembles of random matrices. Math USSR Sbornik 1: 457–483

    Article  MATH  Google Scholar 

  • Mehta L (1991) Random matrices. Academic Press, New York

    MATH  Google Scholar 

  • Muirhead RJ (1982) Aspects of multivariate statistical theory. Wiley, New York

    MATH  Google Scholar 

  • Muskhelishvili NI (1953) Singular integral equations. Noordhoff, Groningen

    MATH  Google Scholar 

  • Pastur L (1972) On the spectrum of random matrices. Theor Math Phys 10: 67–74

    Article  MathSciNet  Google Scholar 

  • Pastur L (2005) A simple approach to the global regime of Gaussian Ensembles of random matrices. Ukrainian Math J 57: 936–966

    Article  MathSciNet  Google Scholar 

  • Pastur L (2006) Limiting laws of linear eigenvalue statistics for unitary invariant matrix models. J Math Phys 47: 103303

    Article  MathSciNet  Google Scholar 

  • Pastur L, Shcherbina M (2008) Bulk universality and related properties of hermitian matrix models. J Stat Phys 130: 205–250

    Article  MATH  MathSciNet  Google Scholar 

  • Prokhorov YuV, Rozanov YuA (1969) Probability theory. Springer, Berlin

    MATH  Google Scholar 

  • Sinai Ya, Soshnikov A (1998) Central limit theorem for traces of large random symmetric matrices with independent matrix elements. Bol Soc Brasil Mat (N.S.) 29: 1–24

    Article  MATH  MathSciNet  Google Scholar 

  • Soshnikov A (2000) The central limit theorem for local linear statistics in classical compact groups and related combinatorial identities. Ann Probab 28: 1353–1370

    Article  MATH  MathSciNet  Google Scholar 

  • Spohn H (1987) Interacting Brownian particles: a study of Dyson’s model. In: Papanicolaou G (eds) Hydrodynamic behavior and interacting particle systems. Springer, New York, pp 151–179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Lytova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lytova, A., Pastur, L. Central limit theorem for linear eigenvalue statistics of the Wigner and the sample covariance random matrices. Metrika 69, 153–172 (2009). https://doi.org/10.1007/s00184-008-0212-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-008-0212-5

Keywords

Navigation