Skip to main content
Log in

More on connections between Wishart and matrix GIG distributions

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

The paper is devoted to relations between the matrix GIG and Wishart distributions. Our basic tool in the first part is a version of the Matsumoto-Yor property for matrix variables. This approach covers the following issues: the Herz identity for the Bessel function of matrix variate argument, characterization of a class of Wishart matrices and linear transformations of the matrix GIG distribution. The Bayesian Wishart model, studied in the second part, gives an alternative definition of the matrix GIG distribution. Such a model is characterized by linearity of conditional expectations and matrix GIG conditional distribution. It is also extended to Bayesian matrix GIG models, in the framework of which an interesting independence property is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold BC, Castillo E and Sarabia J-M (1999). Conditional specification of statistical models. Springer, New York

    MATH  Google Scholar 

  2. Barndorff-Nielsen O, Blæsild P, Jensen JL and Jørgensen B (1982). Exponential transformation models. Proc R Soc Lond A 379: 41–65

    Article  MATH  Google Scholar 

  3. Bernadac E (1995). Random continued fractions and inverse gaussian distribution on a symmetric cone. J Theor Probab 8: 221–259

    Article  MATH  MathSciNet  Google Scholar 

  4. Butler RW (1998). Generalized inverse Gaussian distributions and their Wishart connections. Scand J Stat 25: 69–75

    Article  MATH  MathSciNet  Google Scholar 

  5. Casalis M and Letac G (1994). Characterization of the Jorgensen set in generalized linear models. Test 3: 145–162

    Article  MATH  MathSciNet  Google Scholar 

  6. Diaconis P and Ylvisaker D (1979). Conjugate priors for exponential families. Ann Stat 7: 269–281

    Article  MATH  MathSciNet  Google Scholar 

  7. Geiger D and Heckerman D (1998). A characterization of the bivariate Wishart distribution. Probab Math Stat 18: 119–131

    MATH  MathSciNet  Google Scholar 

  8. Geiger D and Heckerman D (2002). Parameter priors for directed acyclic graphical models and the characterization of several probability distributions. Ann Stat 30: 1412–1440

    Article  MATH  MathSciNet  Google Scholar 

  9. Gindikin SG (1975). Invariant generalized functions in homogeneous domains. Funct Anal Appl 9: 50–52

    Article  MATH  MathSciNet  Google Scholar 

  10. Herz CS (1955). Bessel functions of matrix argument. Ann Math 61: 474–523

    Article  MathSciNet  Google Scholar 

  11. Letac G (2003) Convergence de l’intégrale GIG, unpublished note, pp 1–2

  12. Letac G, Massam H (2001) The normal quasi-Wishart distribution. In: Viana MAG, Richards DStP (eds) Algebraic methods in statistics and probability. AMS Contemp Math 287:231–239

  13. Letac G and Seshadri V (1983). A characterization of the generalized inverse Gaussian distribution by continued fractions. Z Wahrsch Verw Geb 62: 482–489

    Article  MathSciNet  Google Scholar 

  14. Letac G and Wesołowski J (2000). An independence property for the product of GIG and gamma laws. Ann Probab 28: 1371–1383

    Article  MATH  MathSciNet  Google Scholar 

  15. Lukacs E (1955). A characterization of the gamma distribution. Ann Math Stat 26: 319–324

    Article  MATH  MathSciNet  Google Scholar 

  16. Massam H and Wesołowski J (2006). The Matsumoto-Yor property and the structure of the Wishart distribution. J Multivar Anal 97: 103–123

    Article  MATH  Google Scholar 

  17. Muirhead RJ (1982). Aspects of multivariate statistical theory. Wiley, New York

    MATH  Google Scholar 

  18. Seshadri V (2003). Some properties of the matrix generalized inverse Gaussian distribution. In: Balakrishnan, N, Kannan, N and Srinivasan, MR (eds) Statistical methods and practice. Recent advances, pp 47–56. Narosa Publishing House, New Delhi

    Google Scholar 

  19. Vallois P (1989). Sur le passage de certaines marches aléatoires planes au-dessus d’une hyperbole équilatère. Ann Inst H Poincaré 25: 443–456

    MATH  MathSciNet  Google Scholar 

  20. Wesołowski J (2002). The Matsumoto-Yor independence property for GIG and Gamma laws, revisited. Math Proc Camb Philos Soc 133: 153–161

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wesołowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seshadri, V., Wesołowski, J. More on connections between Wishart and matrix GIG distributions. Metrika 68, 219–232 (2008). https://doi.org/10.1007/s00184-007-0154-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-007-0154-3

Keywords

Navigation