Skip to main content
Log in

Strong Consistency of the Maximum Likelihood Estimator in Generalized Linear and Nonlinear Mixed-Effects Models

  • Original Article
  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Generalized linear and nonlinear mixed-effects models are used extensively in biomedical, social, and agricultural sciences. The statistical analysis of these models is based on the asymptotic properties of the maximum likelihood estimator. However, it is usually assumed that the maximum likelihood estimator is consistent, without providing a proof. A rigorous proof of the consistency by verifying conditions from existing results can be very difficult due to the integrated likelihood. In this paper, we present some easily verifiable conditions for the strong consistency of the maximum likelihood estimator in generalized linear and nonlinear mixed-effects models. Based on this result, we prove that the maximum likelihood estimator is consistent for some frequently used models such as mixed-effects logistic regression models and growth curve models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson DA, Aitkin M (1985) Variance component models with binary response: Interviewer variability. J Roy Stat Soc B 47:203–210

    MathSciNet  Google Scholar 

  • Andrews DWK (1987) Consistency in nonlinear econometric models: a generic uniform law of large numbers. Econometrica 55:1465–1471

    Article  MathSciNet  MATH  Google Scholar 

  • Booth JG, Hobert JP (1999) Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. J Roy Stat Soc B Methodol 61:265–285

    Article  MATH  Google Scholar 

  • Bradley RA, Gart JJ (1962) The asymptotic properties of ML estimators when sampling from associated populations. Biometrika 49(1–2):205–214

    MathSciNet  MATH  Google Scholar 

  • Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88(421):9–25

    Article  MATH  Google Scholar 

  • Bulter SM, Louis TA (1997) Consistency of maximum likelihood estimators in general random effects models for binary data. Ann Stat 25:351–377

    Article  Google Scholar 

  • Choirat C, Hess C, Seri R (2003) A functional version of the birkhoff ergodic theorem for a normal integrand: a variational approach. Ann Prob 31:63–92

    Article  MathSciNet  MATH  Google Scholar 

  • Chung KL (1968) A course in probability theory. Harcourt Brace & World, USA

    MATH  Google Scholar 

  • Cramer H (1946) Mathematical methods of statistics. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Davidian M, Giltinan DM (1993) Some general estimation methods for nonlinear mixed-effects models. J Biopharm Stat 3(1):23–55

    Article  PubMed  Google Scholar 

  • Davidian M, Giltinan DM (1995) Nonlinear models for repeated measurements data. Chapman and Hall, London

    Google Scholar 

  • Diggle PJ, Heagetty P, Liang K-Y, Zeger SL (2002) Analysis of longitudinal data. Oxford University Press, Oxford

    Google Scholar 

  • Dupacova J, Wets R (1988) Asymptotic behaviour of statistical estimators and of optimal solutions of stochastic optimization problems. Ann Stat 16:1517–1549

    Article  MathSciNet  MATH  Google Scholar 

  • Hedeker D, Gibbons RD (1994) A random-effects ordinal regression model for multilevel analysis. Biometrics 50:933–944

    Article  PubMed  MATH  Google Scholar 

  • Hoadley B (1971) Asymptotic properties of maximum likelihood estimators for the independent not identically distributed case. Ann Math Stat 42(6):1977–1991

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang J (1999) Conditional inference about generalized linear mixed models. Ann Stat 27:1974–2007

    Article  MATH  Google Scholar 

  • Lehmann EL (1983) Theory of point estimation. John Wiley, New York

    MATH  Google Scholar 

  • Liang K-Y, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22

    Article  MathSciNet  MATH  Google Scholar 

  • Lindstrom MJ, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46:673–687

    Article  PubMed  MathSciNet  Google Scholar 

  • McCulloch CE (1997) Maximum likelihood algorithms for generalized linear mixed models. J Am Stat Assoc 92:162–170

    Article  MathSciNet  MATH  Google Scholar 

  • McCulloch CE (2003) Generalized linear mixed models. vol. 7 of CBMS/IMS monograph series

  • Mentré F, Gomeli R (1995) A two-step iterative algorithm for estimation in nonlinear mixed-effect models with an evaluation in population pharmacokinetics. J Biopharm Stat 5(2):141–158

    Article  PubMed  MATH  Google Scholar 

  • Pinheiro JC, Bates DM (1995) Approximation to the log-likelihood function in the nonlinear mixed-effects models. J Comput Graph Stat 4:12–35

    Article  Google Scholar 

  • Potscher DM, Prucha IR (1989) A uniform law of large numbers fo dependent and heterogeneous data processes. Econometrica 57:675–683

    Article  MathSciNet  Google Scholar 

  • Roe DJ (1997) Comparison of population pharmacokienetic modeling methods using simulated data: Results from the population modeling workgroup. Stat Med 16:1241–1262

    Article  PubMed  Google Scholar 

  • Sheiner LB, Beal SL (1980) Evaluation of method for estimating population pharmacokinetic parameters, I. Michaelis-Menten model: routine clinical pharmacokienetic data. J Pharmacokienet Biopharm 8:553–571

    Article  Google Scholar 

  • Stiratelli R, Laird N, Ware J (1984) Random effects models for serial observations with binary responses. Biometrics 40:961–971

    Article  PubMed  Google Scholar 

  • Tutz G, Fahrmeir L (2001) Multivariate statistical modelling based on generalized linear models. Springer, Berlin Heidelberg New Tork

    MATH  Google Scholar 

  • Vonesh EF, Chinchilli VM (1997) Linear and nonlinear models for the analysis of repeated measurements. Marcel Dekker, New York

    MATH  Google Scholar 

  • Vonesh EF, Wang H, Nie L, Majumdar D (2002) Conditional second-order generalized estimating equations for generalized linear and nonlinear mixed-effects models. J Am Stat Assoc 96:282–291

    Article  MathSciNet  Google Scholar 

  • Wald A (1949) Note on the consistency of the maximum likelihood estimate. Ann Math Stat 20:595–601

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfinger RD, Lin X (1997) Two Taylor-series approximation methods for nonlinear mixed models. Comput Stat Data Anal 25:465–490

    Article  MATH  Google Scholar 

  • Zeger SL, Karim MR (1991) Generalized linear models with random effects: a Gibbs sampling approach. J Am Stat Assoc 86:79–86

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Nie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, L. Strong Consistency of the Maximum Likelihood Estimator in Generalized Linear and Nonlinear Mixed-Effects Models. Metrika 63, 123–143 (2006). https://doi.org/10.1007/s00184-005-0001-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-005-0001-3

Keywords

AMS Subject Classification

Navigation