Skip to main content
Log in

The mathematical modelling of the impact of electric (Seebeck) effects on end-milling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

It is a well-known fact that thermoelectric currents, reaching even the scale of ampere, develop during chip formation in the machine-workpiece-tool-chip. The impact of these currents on tool wear in end-milling was examined with a qualitative thermoelectric model, in which wear is described by an autonomous non-linear differential equation. Cutting temperature was measured by a so-called natural thermoelement with C60 and P35 carbide pair, which were submerged into heated Sn bath at validation. The mathematical model can be solved by a numerical method, where the inverse of the differential equation of wear was used. The wear curves determined by calculation fitted well with the measurement results. The results were achieved by cutting experiments using P35 carbide conducted on the C45 quality steel workpiece. It was found that the optimal solution with respect to the wear of the tool behaving as a natural thermal element might be achieved if the current is compensated by an external power source. Based on the model, anomalies might occur in some cases in the thermoelectric system. Further research is necessary to decide if this is only a special characteristic of the model or the model is interpreting really the actual processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pálmai Z (2013) Egy lokális deformációval megvalósuló fémtechnológia matematikai modellezése. Anyagok Világa 2:1–33

    Google Scholar 

  2. Pálmai Z (2014) A forgácsolószerszámok kopásának matematikai modellezése felületi degradációjuk vizsgálata alapján. Anyagok Világa 1:8–50

    Google Scholar 

  3. Uehara K, Sakurai M, Ikeda T (1992) On the problem of thermoelectric current in metal cutting. Ann CIRP 41(1):75–78

    Article  Google Scholar 

  4. Gottwein K (1926) Temperature of the cutting edge in turning as dependent on the form of chip cross-section. Maschinenbau 5:187

    Google Scholar 

  5. Solaja V, Hughes H (1958/59) Some electrical phenomena in metal cutting. Wear 2: 311–314

  6. Küsters KJ. Temperaturen im Schneidkeil spanender Werkzeuge, Dissertation 1956. Technische Hochschule, Aachen

  7. Lovack H (1967) Temperaturen an Hartmetalldrehwerkzeugen bei der Sthalzerspanung. Dissertation. Technische Hochschule, Aachen

  8. Lowack H (1968) Temperaturen an Hartmetallwerkzeugen bei der Stahlzerspanung. Industrie Anzeiger 90 Nr. 34. v. 26.4: 709

  9. Opitz H (1957) About wear on cutting tools. Proc. Conf. Lubrication and Wear, Inst. Mech. Engrs., London, pp. 664

  10. Simpson FF, Russel RW (1957) Influence of magnetic field and passage of electrical currents on the deterioration of ball bearings. Proc. Conf. Lubrication and Wear, Inst. Mech. Engrs., London, pp. 477

  11. Ellis J, Barrow G (1969) Tool wear in metal cutting and its relationship with the thermo-electric circuit. Ann CIRP 17:39–50

    Google Scholar 

  12. Dubrov JC, Nikolaeva GC, Filolenko VC (1973) K voprosu o fizitheskoi vliania thermoelektritheskih iavlenia na processa trenia i rezania metallov. Izdatlestvo Nauka, Moskow

    Google Scholar 

  13. Shan HS, Pandey PC (1975) Wear of cutting tools: thermo-electric effects. Wear 32:167–179

    Article  Google Scholar 

  14. Shan HS, Pandey PC (1976) Oxidation and wear behaviour of carbide tools. Wear 37:69–75

    Article  Google Scholar 

  15. Bredell LJ (1983) The influence of thermo electric current on the wear of tungsten carbide tools. In: Science of hard materials. Springer, p 723–734

  16. Steward HA, Srinivasan S, Stiffler AK, Miller DB (1994) Electrical discharge when machining medium-density fiberboard and tool wear. Tribol Int 27(5):343–348

    Article  Google Scholar 

  17. Wistuba W (1997) The effect of an external electric field on the operation of an aluminium oxide–cast iron sliding contact joint. Wear 208:113–117

    Article  Google Scholar 

  18. Wistuba W (1997) A phenomenon of triboelectrization in aluminium oxide–polytetrafluoroethylene sliding contact joint operating under reduced lubrication conditions. Wear 208:118–124

    Article  Google Scholar 

  19. Gangopadhyay A, Barber G, Zhaob H (2006) Tool wear reduction through an externally applied electric current. Wear 260:549–553

    Article  Google Scholar 

  20. Tanaka R, Yougchuan L, Akira H, Ueda T (2009) Influence of additional electric current on machinability of BN free-machining steel in turning. J Adv Mech Des Syst Manuf 3(2):171–178

    Google Scholar 

  21. Pálmai Z (1984) Formation of non-metallic protective layers on high-speed steel tools. Metal Technol 11:34–37

    Article  Google Scholar 

  22. Csobod L (1983) A forgácsolás hőjelenségeinek vizsgálata szakaszos forgácsleválasztásnál, a termoelektromos jelenség felhasználásával. Disszertáció. Miskolci Egyetem

  23. Pálmai Z (1987) Cutting temperature in intermittend cutting. Int J Mach Tool Manuf 27(2):261–274

    Article  Google Scholar 

  24. Kalászi I (1966) A phenomenon leading to an error in measuring the cutting temperatures by the tool/work method. Int J Prod Res 4:329–335

    Article  Google Scholar 

  25. Kaminise AK, Guimaraes G, de Silva MB (2014) Development of a tool–work thermocouple calibration system with physical compensation to study the influence of tool-holder. Int J Adv Manuf Technol. doi:10.1007/s00170-014-5898-0

    Google Scholar 

  26. Sun Y, Sun J, Li J, Xiong Q (2014) An experimental investigation of the influence of cutting parameters on cutting temperature in milling Ti6Al4V by applying semi-artificial thermocouple. Int J Adv Manuf Technol 70:765–773

    Article  Google Scholar 

  27. Lazoglu I, Islam C (2012) Modeling of 3D temperature fields for oblique machining. CIRP Ann Manuf Technol 61:127–130

    Article  Google Scholar 

  28. Colwell LV (1975) Cutting temperature versus tool wear. Ann CIRP 24(1):73–76

    MathSciNet  Google Scholar 

  29. Rubenstein C (1976) An analysis of tool life based on flank-face wear. J Eng Ind: 221–232

  30. Kundrák J (1996) The scientific principles of increasing the effectiveness of inner surfaces’ cutting with CBN tools. Harkov, p 368

  31. Park J-J, Ulsoy AG (1993) On-line flank wear estimation using an adaptive observer and computer vision. J Eng Ind Trans ASME 115:30–43

    Article  Google Scholar 

  32. Cook NH (1973) Tool wear and tool life. J Eng Ind Trans ASME: 931–938

  33. Luo X, Cheng K, Holt R, Liu X (2005) Modeling flank wear of carbide tool insert in metal cutting. Wear 259:1235–1240

    Article  Google Scholar 

  34. Barlier C, Lescalier C, Mosian A (1997) Continuous flank wear measurement of turning tools by integrated microthermocouple. Ann CIRP 46(1):35–38

    Article  Google Scholar 

  35. Kodácsy J (2010) Nem publikált mérések Kecskeméti Főiskola

  36. Pálmai Z (2013) Proposal for a new theoretical model of the cutting tool’s flank wear. Wear 303:437–445

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Pálmai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pálmai, Z., Csobod, L. The mathematical modelling of the impact of electric (Seebeck) effects on end-milling. Int J Adv Manuf Technol 88, 115–126 (2017). https://doi.org/10.1007/s00170-016-8696-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8696-z

Keywords

Navigation