Skip to main content

Advertisement

Log in

Study on blasting erosion arc machining of Ti–6Al–4V alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Blasting erosion arc machining (BEAM) was applied to improve the machining efficiency of Ti–6Al–4V alloy. 5-factor, 2-level fractional factorial experiment was firstly employed to find out the main factors for MRR (material removal rate). According to the results of fractional factorial experiment, 3-factor, 2-level full factorial experiment was conducted to find out the relationship between machining performance and the main factors (peak current, pulse duration, and pulse interval) under the negative electrode machining. Results revealed that when peak current was 500 A and pulse duration was 8 ms, MRR could achieve 16,800 mm3/min, which means the specific energy efficiency was 33.6 mm3/(A · min). Then, MRR was optimized base on MATLAB optimization toolbox and could reach 20,100 mm3/min when adopting the optimized parameters (peak current 600 A, pulse duration 8.8 ms, and pulse interval 3.0 ms). Although TWR (tool wear ratio) can be effected by the machining parameters, it appeared to be stable (around 3 ± 1 %). Besides, the polarity effect was also studied, and flow field simulations were employed to illustrate the influence of feeding direction on the surface roughness. In addition, the machined surface was analyzed by utilizing SEM, EDS, XRD, etc. Results of the surface analysis disclosed that the oxygen content in the negative electrode machined surface was obviously higher than that in the positive electrode machined surface. Since the positive electrode machined surface was much smoother, it can be used to improve the surface quality while the negative electrode machining is suitable for the bulk material removal with high energy. Finally, a Ti–6Al–4V turbine blade sample was machined to demonstrate the feasibility of high efficiency BEAM in difficult-to-cut material processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Ezugwu EO, Wang ZM (1997) Titanium alloys and their machinability-a review. J Mater Process Technol 68:262–274. doi:10.1016/S0924-0136(96)00030-1

    Article  Google Scholar 

  2. Ahmet H, Ulas C (2007) Electrical discharge machining of titanium alloy (Ti-6Al-4V). Appl Surf Sci 253:9007–9016. doi:10.1016/j.apsusc.2007.05.031

    Article  Google Scholar 

  3. Sharma A, Sharma MD, Sehgal R (2013) Experimental study of machining characteristics of titanium alloy (Ti-6Al-4V). Arab J Sci Eng 38:3201–3209. doi:10.1007/s13369-012-0451-7

    Article  Google Scholar 

  4. Lei S, Liu W (2002) High-speed machining of titanium alloys using the driven rotary tool. Int J Mach Tool Manuf 42:653–661. doi:10.1016/S0890-6955(02)00012-3

    Article  Google Scholar 

  5. da Silva RB, Machado AR, Ezugwu EO (2013) Tool life and wear mechanisms in high speed machining of Ti–6Al–4V alloy with PCD tools under various coolant pressures. J Mater Process Technol 213:1459–1464. doi:10.1016/j.jmatprotec.2013.03.008

    Article  Google Scholar 

  6. Fang N, Srinivasa Pai P, Edwards N (2013) A comparative study of high-speed machining of Ti–6Al–4V and Inconel 718—part I: effect of dynamic tool edge wear on cutting forces. Int J Adv Manuf Technol 68:1839–1849. doi:10.1007/s00170-013-4981-2

    Article  Google Scholar 

  7. Fang N, Srinivasa Pai P, Edwards N (2013) A comparative study of high-speed machining of Ti-6Al-4V and Inconel 718—part II: effect of dynamic tool edge wear on cutting vibrations. Int J Adv Manuf Technol 68:1417–1428. doi:10.1007/s00170-013-4931-z

    Article  Google Scholar 

  8. Wang ZG, Wong YS, Rahman M (2005) High-speed milling of titanium alloys using binderless CBN tools. Int J Mach Tool Manuf 45:105–114. doi:10.1016/j.ijmachtools.2004.06.021

    Article  Google Scholar 

  9. Oosthuizen GA, Akdogan G, Treurnicht N (2011) The performance of PCD tools in high-speed milling of Ti6Al4V. Int J Adv Manuf Technol 52:929–935. doi:10.1007/s00170-010-2804-2

    Article  Google Scholar 

  10. Canteroa JL, Tardío MM, Canteli JA, Marcos M, Migue´lez MH (2005) Dry drilling of alloy Ti–6Al–4V. Int J Mach Tool Manuf 45:1246–1255. doi:10.1016/j.ijmachtools.2005.01.010

    Article  Google Scholar 

  11. Setti D, Sinha MK, Sudarsan G, Venkateswara Rao P (2015) Performance evaluation of Ti-6Al-4V grinding using chip formation and coefficient of friction under the influence of nanofluids. Int J Mach Tool Manuf 88:237–248. doi:10.1016/j.ijmachtools.2014.10.005

    Article  Google Scholar 

  12. Kumar R, Sahoo AK, Satyanarayana K (2013) Some studies on cutting force and temperature in machining Ti-6Al-4V alloy using regression analysis and ANOVA. Int J Ind Eng Comput 4:427–436. doi:10.5267/j.ijiec.2013.03.002

    Google Scholar 

  13. Yang SB, Xu J, Yucan F, Wei W (2012) Finite element modeling of machining of hydrogenated Ti-6Al-4V alloy. Int J Adv Manuf Technol 59:253–261. doi:10.1007/s00170-011-3479-z

    Article  Google Scholar 

  14. Chen G, Ren C, Yang X, Jin X, Guo T (2011) Finite element simulation of high-speed machining of titanium alloy (Ti–6Al–4V) based on ductile failure model. Int J Adv Manuf Technol 56:1027–1038. doi:10.1007/s00170-011-3233-6

    Article  Google Scholar 

  15. Shao F, Liu Z, Wan Y, Shi Z (2010) Finite element simulation of machining of Ti-6Al-4V alloy with thermodynamical constitutive equation. Int J Adv Manuf Technol 49:431–439. doi:10.1007/s00170-009-2423-y

    Article  Google Scholar 

  16. Chen SL, Yan BH, Huang FY (1999) Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti-6A1-4V. J Mater Process Technol 87:107–111. doi:10.1016/S0924-0136(98)00340-9

    Article  Google Scholar 

  17. Fonda P, Wang Z, Yamazaki K (2008) A fundamental study on Ti-6Al-4V’s thermal and electrical properties and their relation to EDM productivity. J Mater Process Technol 200:583–589. doi:10.1016/j.jmatprotec.2007.09.060

    Article  Google Scholar 

  18. Jabbaripour B, Sadeghi MH, Faridvand S, Shabgard MR (2012) Investigating the effects of EDM parameters of on surface integrity, MRR and TWR in machining of Ti–6Al–4V. Mach Sci Technol 16:419–444. doi:10.1080/10910344.2012.698971

    Article  Google Scholar 

  19. Kao JY, Tsao CC, Wang SS, Hsu CY (2010) Optimization of the EDM parameters on machining Ti–6Al–4V with multiple quality characteristics. Int J Adv Manuf Technol 47:395–402. doi:10.1007/s00170-009-2208-3

    Article  Google Scholar 

  20. Klocke F, Zeis M, Klink A, Veselovac D (2013) Technological and economical comparison of roughing strategies via milling, sinking-EDM, wire-EDM and ECM for titanium- and nickel-based blisks. CIRP J Manuf Sci Technol 6:198–203. doi:10.1016/j.cirpj.2013.02.008

    Article  Google Scholar 

  21. Wang X, Zhidong L, Xue R, Zongjun T, Yinhu H (2013) Research on self-mixed oxygen in discharge gap to improve the processing characteristics of titanium alloy electrical discharge machining. Acta Aeronautica et Astronautica Sinica 34(10):2419–2426. doi:10.7527/S1000-6893.2013.0121

    Google Scholar 

  22. Lin G, Li L, Wansheng Z, Rajurkar KP (2012) Electrical discharge machining of Ti6Al4V with a bundled electrode. Int J Mach Tool Manuf 53:100–106. doi:10.1016/j.ijmachtools.2011.10.002

    Article  Google Scholar 

  23. Fei W, Yonghong L, Yanzhen Z (2014) Compound machining of titanium alloy by super high speed EDM milling and arc machining. J Mater Process Technol 214:531–538. doi:10.1016/j.jmatprotec.2013.10.015

    Article  Google Scholar 

  24. Zhao W, Gu L, Xu H, Li L, Xiang X (2013) A novel high efficiency electrical erosion process-blasting erosion arc machining. Procedia CIRP 6:621–625. doi:10.1016/j.procir.2013.03.057

    Article  Google Scholar 

  25. Xu H, Lin G, Chen J, Hu J, Zhao W (2015) Machining characteristics of nickel-based alloy with positive polarity blasting erosion arc machining. Int J Adv Manuf Technol 79(5):937–947. doi:10.1007/s00170-015-6891-y

    Article  Google Scholar 

  26. Heng X, Hiroaki H, Masanori K, Nobuhiko N (1996) Measurement of energy distribution in continuous EDM process. J JSPE 62(8):1141–1145. doi:10.2493/jjspe.62.1141

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Gu, L., Xu, H. et al. Study on blasting erosion arc machining of Ti–6Al–4V alloy. Int J Adv Manuf Technol 85, 2819–2829 (2016). https://doi.org/10.1007/s00170-015-8126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-8126-7

Keywords

Navigation