Skip to main content
Log in

Monitoring of laser welding using source localization and tracking processing by microphone array

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Microphone is subject to the interference of working acoustic sources from surroundings. It is often difficult to acquire useful acoustic signal from the hostile environment. This problem has become the obstacle to use the acoustic signal for monitoring laser welding process. To monitor the weld quality effectively, a novel monitoring strategy on source localization and tracking of laser source is investigated in this work. A plane microphone array system composed of eight microphones has been applied to capture the acoustic signal. A time delay recognition has been employed to source localization and tracking. These results reveal that this system with the processing method is capable of distinguishing welding defects in laser welding process. By visualizing the position of laser source, it can directly judge and distinguish the weld quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sohail M, Han SW, Na SJ, Gumenyuk A, Rethmeier M (2014) Characteristics of weld pool behavior in laser welding with various power inputs. Weld World 58:269–277. doi:10.1007/s40194-014-0112-4

    Article  Google Scholar 

  2. Gao XD, Mo L, Wen O, Katayama S (2013) Neural network model for recognizing joint offset during fiber laser welding. Weld J 92(9):251–257

    Google Scholar 

  3. Tzeng YF (2000) Process characterisation of pulsed Nd:YAG laser seam welding. Int J Adv Manuf Technol 16(1):10–18. doi:10.1007/pl00013126

    Article  MathSciNet  Google Scholar 

  4. Li CB, Liu LM (2013) Investigation on weldability of magnesium alloy thin sheet T-joints: arc welding, laser welding, and laser-arc hybrid welding. Int J Adv Manuf Technol 65(1-4):27–34. doi:10.1007/s00170-012-4145-9

    Article  Google Scholar 

  5. You DY, Gao XD, Katayama S (2014) Monitoring of high-power laser welding using high-speed photographing and image processing. Mech Syst Signal Process 49:39–52. doi:10.1016/j.ymssp.2013.10.024

    Article  Google Scholar 

  6. Rodil SS, Gomez RA, Bernardez JM, Rodriguez F, Miguel LJ, Peran JR (2010) Laser welding defects detection in automotive industry based on radiation and spectroscopical measurements. Int J Adv Manuf Technol 49(4):133–145. doi:10.1007/s00170-009-2395-y

    Article  Google Scholar 

  7. Huang Y, Xiao YL, Wang PJ, Li MZ (2013) A seam-tracking laser welding platform with 3D and 2D visual information fusion vision sensor system. Int J Adv Manuf Technol 67(1-4):415–426. doi:10.1007/s00170-012-4494-4

    Article  Google Scholar 

  8. Luo M, Shin YC (2015) Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding. Opt Lasers Eng 64:59–70. doi:10.1016/j.optlaseng.2014.07.004

    Article  Google Scholar 

  9. Luo MSY, Shin Y (2015) Estimation of keyhole geometry and prediction of welding defects during laser welding based on a vision system and a radial basis function neural network. Int J Adv Manuf Technol 81(1-4):263–276. doi:10.1007/s00170-015-7079-1

    Article  Google Scholar 

  10. You DY, Gao XD, Katayama S (2014) Review of laser welding monitoring. Sci Technol Weld Join 19:181–201. doi:10.1179/1362171813y.0000000180

    Article  Google Scholar 

  11. You DY, Gao XD, Katayama S (2013) Multiple-optics sensing of high-brightness disk laser welding process. NDT E Int 60:32–39. doi:10.1016/j.ndteint.2013.07.005

    Article  Google Scholar 

  12. Zhang YM, Zhang SB, Liu YC (2001) A plasma cloud charge sensor for pulse keyhole process control. Meas Sci Technol 12:1365–1370. doi:10.1088/0957-0233/12/8/352

    Article  Google Scholar 

  13. Zhang Y, Zhang CL, Tan LP, Li SC (2013) Coaxial monitoring of the fibre laser lap welding of Zn-coated steel sheets using an auxiliary illuminant. Opt Laser Technol 50:167–175. doi:10.1016/j.optlastec.2013.03.001

    Article  Google Scholar 

  14. Chen ZQ, Gao XD (2014) Detection of weld pool width using infrared imaging during high-power fiber laser welding of type 304 austenitic stainless steel. Int J Adv Manuf Technol 74(9-12):1247–1254. doi:10.1007/s00170-014-6081-3

    Article  Google Scholar 

  15. Huang W, Kovacevic R (2009) Feasibility study of using acoustic signals for online monitoring of the depth of weld in the laser welding of high-strength steels. Proc IME B J Eng Manufact 223:343–361. doi:10.1243/09544054jem1320

    Article  Google Scholar 

  16. Ao SS, Luo Z, Feng MN, Yan FY (2015) Simulation and experimental analysis of acoustic signal characteristics in laser welding. Int J Adv Manuf Technol 81(1-4):277–287. doi:10.1007/s00170-015-7164-5

    Article  Google Scholar 

  17. Shao J, Yan Y (2005) Review of techniques for on-line monitoring and inspection of laser welding. J Phys Conf Ser 15:101–107. doi:10.1088/1742-6596/15/1/017

    Article  Google Scholar 

  18. Gu H, Duley WW (1996) Acoustic emission from modulated laser beam welding of materials. J Laser Appl 8:205–210

    Article  Google Scholar 

  19. Gu H, Mueller RE, Duley WW (1993) Acoustic monitoring of modulated laser beam processing of metals. In: Proc. SPIE 2703, Lasers as tools for manufacturing of durable goods and microelectronics, San Jose, CA, USA. 80–90. doi:10.1117/12.237717

  20. Gu H, Duley WW (1996) A statistical approach to acoustic monitoring of laser welding. J Phys D Appl Phys 29:556–560. doi:10.1088/0022-3727/29/3/011

    Article  Google Scholar 

  21. Farson DF, Kim KR (1999) Generation of optical and acoustic emissions in laser weld plumes. J Appl Phys 85:1329–1336

    Article  Google Scholar 

  22. Huang W, Kovacevic R (2009) Asme Noise reduction during acoustic monitoring of laser welding of high-strength steels. International Manufacturing Science and Engineering Conference, New York. Am Soc Mech Eng 763–770

  23. Cao X, Jahazi M, Immarigeon JP, Wallace W (2006) A review of laser welding techniques for magnesium alloys. J Mater Process Technol 171:188–204. doi:10.1016/j.jmatprotec.2005.06.068

    Article  Google Scholar 

  24. Zeng H, Zhou Z, Chen YP, Luo H, Hu LJ (2001) Wavelet analysis of acoustic emission signals and quality control in laser welding. J Laser Appl 13:167–173

    Article  Google Scholar 

  25. Huang W, Kovacevic R (2011) A neural network and multiple regression method for the characterization of the depth of weld penetration in laser welding based on acoustic signatures. J Intell Manuf 22:131–143. doi:10.1007/s10845-009-0267-9

    Article  Google Scholar 

  26. Steen KA, McClellan JH, Green O, Karstoft H (2015) Acoustic source tracking in long baseline microphone arrays. Appl Acoust 87:38–45. doi:10.1016/j.apacoust.2014.06.002

    Article  Google Scholar 

  27. Huang QH, Wang T (2014) Acoustic source localization in mixed field using spherical microphone arrays. EURASIP J Adv Signal Process 90:1–16. doi:10.1186/1687-6180-2014-90

    Google Scholar 

  28. Salvati D, Canazza S (2013) Adaptive time delay estimation using filter length constraints for source localization in reverberant acoustic environments. IEEE Signal Process Lett 20:507–510. doi:10.1109/lsp.2013.2253319

    Article  Google Scholar 

  29. Öçal O, Dokmanic I, Vetterli M (2014) Source localization and tracking in non-convex rooms. Paper presented at the 39th International Conference on Acoustics, Speech, and Signal Processing, Florence, Italy, May 4–9, 2014

  30. Chen ZM, Zhu HC, Peng M (2015) Identification and localization of the sources of cyclostationary sound fields. Appl Acoust 87:64–71. doi:10.1016/j.apacoust.2014.06.013

    Article  Google Scholar 

  31. Nam KW, Ji YS, Han J, Lee S, Kim D, Hong SH, Jang DP, Kim IY (2013) Clinical evaluation of the performance of a blind source separation algorithm combining beamforming and independent component analysis in hearing aid use. Speech Comm 55:544–552. doi:10.1016/j.specom.2012.11.002

    Article  Google Scholar 

  32. Luo H, Zeng H, Hu LJ, Hu XY, Zhou ZD (2005) Application of artificial neural network in laser welding defect diagnosis. J Mater Process Technol 170:403–411. doi:10.1016/j.jmatprotec.2005.06.008

    Article  Google Scholar 

  33. Singh AV, Yu M, Gupta AK, Bryden KM (2013) Localization of multiple acoustic sources in a room environment. Appl Energy 109:171–181. doi:10.1016/j.apenergy.2013.03.046

    Article  Google Scholar 

  34. Ajay S, Amir E, Miao Y, Kenneth B, Ashwani G (2012) Acoustic source localization using microphone arrays by TDOA method. 10th International Energy Conversion Engineering Conference. International Energy Conversion Engineering Conference (IECEC). Am Inst Aeronaut Astronaut. doi:10.2514/6.2012-4096

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sansan Ao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Liu, W., Wang, Z. et al. Monitoring of laser welding using source localization and tracking processing by microphone array. Int J Adv Manuf Technol 86, 21–28 (2016). https://doi.org/10.1007/s00170-015-8095-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-8095-x

Keywords

Navigation