Skip to main content

Advertisement

Log in

Research on rheological properties and extrusion behavior of aqueous alumina paste in paste-extrusion-based SFF processes

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this work, the rheological properties and extrusion behavior of aqueous alumina paste which can be used in paste-extrusion-based solid freeform fabrication (SFF) processes are presented. According to the analysis of dynamic viscoelastic properties, the aqueous alumina paste with solid loading of 50 vol% can be treated as a viscous–elastic–plastic body in the extrusion process. The paste shows the viscoelastic feature before yielding and viscoplastic feature after yielding. Although the paste possesses shear-thinning behavior, it can be extruded steadily due to relatively steady apparent viscosity within the range of shearing rate in the actual paste extrusion process. The ram extrusion experiments show that the variation of extrusion pressure is essentially determined by the rheological behavior of paste. The average extrusion pressure in steady extrusion stage can be estimated by Benbow–Bridgwater model. However, there exists a ram velocity threshold (0.1 mm/s in this study) below which the liquid phase migration will be significant and the extrusion pressure is hardly estimated. Due to the viscoplastic fluid feature of paste, the extrudate velocity cannot immediately reach to the expected value when paste extrusion starts and stops, and it could result in the imprecise deposition and “die drooling,” which can be improved by the operation of pulling back of ram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crawford RH, Beaman JJ (1999) Solid freeform fabrication: a new fabrication paradigm. IEEE Spectr 36(2):34–43

    Article  Google Scholar 

  2. Bellini A, Shor L, Guceri SI (2005) New developments in fused deposition modeling of ceramics. Rapid Prototyp J 11(4):214–220

    Article  Google Scholar 

  3. Xiong Z, Yan Y, Zhang R, Sun L (2001) Fabrication of porous poly (L-lactic acid) scaffolds for bone tissue engineering via precise extrusion. Scripta Mater 45(7):773–779

    Article  Google Scholar 

  4. Eqtesadi S, Motealleh A, Miranda P, Pajares A, Lemos A, Ferreira JM (2014) Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering. J Eur Ceram Soc 34(1):107–118

    Article  Google Scholar 

  5. Guo S-Z, Heuzey M-C, Therriault D (2014) Properties of polylactide inks for solvent-cast printing of three-dimensional freeform microstructures. Langmuir 30(4):1142–1150

    Article  Google Scholar 

  6. Vaidyanathan R, Walish J, Lombardi JL, Kasichainula S, Calvert P, Cooper KC (2000) The extrusion freeforming of functional ceramic prototypes. JOM 52(12):34–37

    Article  Google Scholar 

  7. Huang T, Mason MS, Zhao X, Hilmas GE, Leu MC (2009) Aqueous-based freeze-form extrusion fabrication of alumina components. Rapid Prototyp J 15(2):88–95

    Article  Google Scholar 

  8. Liu H, Liu J, Leu MC, Landers R, Huang T (2013) Factors influencing paste extrusion pressure and liquid content of extrudate in freeze-form extrusion fabrication. Int J Adv Manuf Technol 67(1–4):899–906

    Article  Google Scholar 

  9. Young-Hag K, Jun I-K, Kim H-E (2006) Fabrication of poly (ε-caprolactone) /hydroxyapatite scaffold using rapid direct deposition. Mater Lett 60(9–10):1184–1187

    Google Scholar 

  10. Benbow J, Bridgwater J (1993) Paste flow and extrusion. Oxford University Press, Oxford

    Google Scholar 

  11. Rough SL, Bridgwater J, Wilson DI (2000) Effects of liquid phase migration on extrusion of microcrystalline cellulose pastes. Int J Pharm 204(1–2):117–126

    Article  Google Scholar 

  12. Rough SL, Wilson DI, Bridgwater J (2002) A model describing liquid phase migration within an extruding microcrystalline cellulose paste. Chem Eng Res Des 80(7):701–714

    Article  Google Scholar 

  13. Mascia S, Patel MJ, Rough SL, Martin PJ, Wilson DI (2006) Liquid phase migration in the extrusion and squeezing of microcrystalline cellulose pastes. Eur J Pharm Sci 29(1):22–34

    Article  Google Scholar 

  14. Poitou A, Racineux G (2001) A squeezing experiment showing binder migration in concentrated suspensions. J Rheol 45(3):609–625

    Article  Google Scholar 

  15. Ramanath HS, Chua CK, Leong KF, Shah KD (2008) Melt flow behaviour of poly-ε-caprolactone in fused deposition modeling. J Mater Sci Mater Med 19(7):2541–2550

    Article  Google Scholar 

  16. Nikzad M, Masood SH, Sbarski I, Groth AM (2010) Rheological properties of a particulate-filled polymeric composite through fused deposition process. Mater Sci Forum 654–656:2471–2474

    Article  Google Scholar 

  17. Agarwala MK, Jamalabad VR, Langrana NA, Safari A, Whalen PJ, Danforth SC (1996) Structural quality of parts processed by fused deposition. Rapid Prototyp J 2(4):4–19

    Article  Google Scholar 

  18. Tartarisco G, Gallone G, Carpi F, Vozzi G (2009) Polyurethane unimorph bender microfabricated with pressure assisted microsyringe (PAM) for biomedical applications. Mater Sci Eng C 29(6):1835–1841

    Article  Google Scholar 

  19. Lewis JA (2002) Direct-write assembly of ceramics from colloidal inks. Curr Opinion Solid State Mater Sci 6(3):245–250

    Article  Google Scholar 

  20. Smay JE, Cesarano J, Lewis JA (2002) Colloidal inks for directed assembly of 3-D periodic structures. Langmuir 18(14):5429–5437

    Article  Google Scholar 

  21. Doiphode ND, Huang T, Leu MC, Rahaman MN, Day DE (2011) Freeze extrusion fabrication of 13–93 bioactive glass scaffolds for bone repair. J Mater Sci Mater Med 22(3):515–523

    Article  Google Scholar 

  22. Wang J, Shaw LL, Cameron TB (2006) Solid freeform fabrication of permanent dental restorations via slurry micro-extrusion. J Am Ceram Soc 89(1):346–349

    Article  Google Scholar 

  23. Zhu DB, Xu A, Qu YX, Liu Y (2011) Functionalized bio-artifact fabricated via selective slurry extrusion. part 1: preparation of slurry containing tourmaline superfine powders. J Nanosci Nanotechnol 11(12):10891–10895

    Article  Google Scholar 

  24. Zhu DB, Liang JP, Qu YX, Duan GL (2014) Functionalized bio-artifact fabricated via selective slurry extrusion. part 2: fabrication of ceramic dental crown. J Nanosci Nanotechnol 14(5):3703–3706

    Article  Google Scholar 

  25. Xiong Z, Yan Y, Wang S, Zhang R, Zhang C (2002) Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scripta Mater 46(11):771–776

    Article  Google Scholar 

  26. Zürriye Y, Dogan M, Alkan M (2010) Rheological and wall slip properties of kaolinite-silicon oil pastes during extrusion. J Cer Process Res 11(6):752–759

    Google Scholar 

  27. Perrot A, Lanos C, Melinge Y (2007) Mortar physical properties evolution in extrusion flow. Rheol Acta 46(8):1065–1073

    Article  Google Scholar 

  28. Liu H, Leu MC (2009) Liquid phase migration in extrusion of aqueous alumina paste for freeze-form extrusion fabrication. Int J Mod Phys B 23(6–7):1861–1866

    Article  Google Scholar 

  29. Chou S, Sydow K, Martin PJ, Bridgwater J, Wilson DI (2003) Stress relaxation in the extrusion of pastes. J Eur Ceram Soc 23(5):637–646

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, Y. & Li, D. Research on rheological properties and extrusion behavior of aqueous alumina paste in paste-extrusion-based SFF processes. Int J Adv Manuf Technol 83, 2039–2047 (2016). https://doi.org/10.1007/s00170-015-7720-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7720-z

Keywords

Navigation