Skip to main content
Log in

Temperature-sensitive point selection of thermal error model of CNC machining center

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The temperature-sensitive point selection of computer numerical control (CNC) machine tools is crucial to thermal error modeling and compensation. Using the comprehensive analysis method which is a combination of fuzzy clustering, gray correlation, stepwise regression, and determination coefficient optimizes temperature measuring points. First of all, using fuzzy clustering and F statistic classifies temperature variables. Secondly, according to the gray correlation degree between the temperature variables and thermal error, the key temperature variable of each class is selected. Then, the significance of regression equation and parameters of thermal error model are tested, based on the stepwise regression analysis and the non-significant variables are excluded. Finally, the selected temperature variables are arranged to simple permutation and combination, and compares determination coefficients to determine the optimal temperature-sensitive points. The above method is verified on the Leaderway V-450 of CNC machining center. The thermal error prediction model is established. The accuracy and robustness of the model are analyzed. The results show that the temperature measuring point number is reduced from 10 to 2, the fitting accuracy of thermal error prediction model is high, and the model can achieve a good prediction effect and strong robustness under different conditions of spindle speeds and ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryan J (1990) International status of thermal error research. Ann CIRP 39(2):645–656

    Article  MathSciNet  Google Scholar 

  2. Aronson RB (1996) War against thermal expansion. Manuf Eng 116(6):45–50

    Google Scholar 

  3. Yang S, Yuan J, Ni J (1996) Accuracy enhancement of a horizontal machining center by real-time error compensation. J Manuf Syst 15(2):113–124

    Article  Google Scholar 

  4. Miao EM, Gong YY, Cheng TJ, Chen HD (2013) Application of support vector regression to thermal error modeling of machine tools. Opt Precis Eng 21(4):980–986

    Article  Google Scholar 

  5. Miao EM, Niu PC, Fei YT, Yan Y (2011) Selecting temperature-sensitive points and modeling thermal errors of machine tools. J Chin Soc Mech Eng 32(6):559–565

    Google Scholar 

  6. Miao EM, Gong YY, Niu PCH, Ji CHZH, Chen HD (2013) Robustness of thermal error compensation modeling models of CNC machine tools. Int J Adv Manuf Technol 69(9):2593–2603

    Article  Google Scholar 

  7. Lo CH, Yuan JX, Ni J (1999) Optimal temperature variable selection by grouping approach for thermal error modeling and compensation. Int J Mach Tools Manuf 39:1386–1396

    Google Scholar 

  8. Yu J, Zhao SHG, Yu ZHM (2000) Research on recognition of thermal distortion key points and compensation method in NC machine tool. Mach Des Manuf 6:73–74

    Google Scholar 

  9. Luo LH, Guo JG, Su JL (2006) Study on actuality of the method of temperature measurement point optimization and compensating model for the thermal error on machine tools. Mach Tool Hydraul 9:52–53

    Google Scholar 

  10. Ma SHW, Xu ZHH (2007) A study on thermal error compensation for the spindle of XH718 machining center. Mech Sci Technol 26(4):511–514

    Google Scholar 

  11. Fan ZHL, Li ZHH, Yang JG (2010) NC machine tool temperature measuring point optimization and thermal error modeling based on partial correlation analysis. Chin J Mech Eng 21(17):2025–2027

    Google Scholar 

  12. Yang H, Ni J (2005) Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error. Int J Mach Tools Manuf 45(4):455–465

    Article  Google Scholar 

  13. Yang JG, Deng WG, Ren YQ, Li YS, Dou XL (2004) Grouping optimization modeling by selection of temperature variables for the thermal error compensation on machine tools. Chin J Mech Eng 15(6):478–481

    Google Scholar 

  14. Kim SK, Cho DW (1997) Real-time estimation of temperature distribution in a ball-screw system. Int J Mach Tools Manuf 37(4):451–464

    Article  Google Scholar 

  15. Yang S, Yuan J, Ni J (1996) The improvement of thermal error modeling and compensation on machine tools by CMAC neural network. Int J Mach Tools Manuf 36(4):527–534

    Article  Google Scholar 

  16. Chen C, Zhang CY, Chen H (2011) Selection and modeling of temperature variables for the thermal error compensation in servo system. The Tenth International Conference on Electronic Measurement & Instruments ICEMI2011, Cheng Du, China, 16–18 Aug 2011

  17. Han J, Wang LP, Wang HT, Cheng NB (2012) A new thermal error modeling method for CNC machine tools. Int J Adv Manuf Technol 62:205–212

    Article  Google Scholar 

  18. Yang JG, Ren YQ, Liu GL, Zhao HT, Dou XL, Chen WZ, He SW (2005) Testing, variable selecting and modeling of thermal errors on an INDEX-G200 turning center. Int J Adv Manuf Technol 26:814–818

    Article  Google Scholar 

  19. Zhang T, Ye WH, Liang RJ, Lou PH, Yang XL (2013) Temperature variable optimization for precision machine tool thermal error compensation on optimal threshold. Chin J Mech Eng 26(1):158–165

    Article  Google Scholar 

  20. Yang JG, Yuan JX, Ni J (1999) Thermal error mode analysis and robust modeling for error compensation on a CNC turning center. Int J Mach Tools Manuf 39:1367–1381

    Article  Google Scholar 

  21. Le ZK (1996) Fuzzy relation compositions and pattern recognition. Inf Sci 89:107–130

    Article  Google Scholar 

  22. Dunn JC (1974) A graph theoretic analysis of pattern classification via Tamura’s fuzzy relation. IEEE Trans SMC 4(3):310–313

    MATH  Google Scholar 

  23. Fei YT (2004) Error theory and data processing. Machinery Industry Press, Bei Jing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong Ya-yun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

En-ming, M., Ya-yun, G., Lian-chun, D. et al. Temperature-sensitive point selection of thermal error model of CNC machining center. Int J Adv Manuf Technol 74, 681–691 (2014). https://doi.org/10.1007/s00170-014-6009-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6009-y

Keywords

Navigation