Skip to main content
Log in

A general fuzzy TOPSIS model in multiple criteria decision making

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Decision making is the process of finding the best option among the feasible alternatives. In classical multiple criteria decision-making (MCDM) methods, the ratings and the weights of the criteria are known precisely. Owning to vagueness of the decision data, the crisp data are inadequate for real-life situations. Since human judgments including preferences are often vague and cannot be expressed by exact numerical values, the application of fuzzy concepts in decision making is deemed to be relevant. In this paper, we proposed the application of a fuzzy distance formula in order to compute a crisp value for the standard deviation of fuzzy data. Then, we use this crisp value of the standard deviation to normalize the fuzzy data using the distance formula again. In our normalization approach, we have enough flexibility to consider various types of fuzzy numbers (such as triangular, trapezoidal, and interval). Finally, we use the technique for order preference by similarity to an ideal solution to determine the ranking order of the alternatives. A numerical example from the literature is solved to demonstrate this applicability of the proposed model. We also compare our proposed approach with similar methods in the literature using some examples with known results and a number of randomly generated test problems. The results point to the applicability of our method and signify its effectiveness in identifying solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeleny M (1982) Multiple criteria decision making. McGraw-Hill, New York

    MATH  Google Scholar 

  2. Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications. Springer, Berlin

    MATH  Google Scholar 

  3. Buckley JJ (1985) Fuzzy hierarchical analysis. Fuzzy Sets Syst 17:233–247. doi:10.1016/0165-0114(85)90090-9

    Article  MATH  MathSciNet  Google Scholar 

  4. Carlsson C (1982) Tackling an MCDM-problem with the help of some results from fuzzy set theory. Eur J Oper Res 10(3):270–281. doi:10.1016/0377-2217(82)90226-0

    Article  MATH  Google Scholar 

  5. Chen SJ, Hwang CL (1992) Fuzzy multiple attribute decision making methods and applications. Springer, Berlin

    MATH  Google Scholar 

  6. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning, part 1. Information Sciences 8(3):199–249

    Article  MathSciNet  Google Scholar 

  7. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning, part 2. Information Sciences 8(4):301–357

    Article  MathSciNet  Google Scholar 

  8. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning, part 3. Information Sciences 9(1):43–58. doi:10.1016/0020-0255(75)90017-1

    Article  MathSciNet  Google Scholar 

  9. Zimmermann HJ (1996) Fuzzy set theory and its applications. Kluwer, Boston

    MATH  Google Scholar 

  10. Lee JW, Kim SH (2001) An integrated approach for interdependent information system project selection. Int J Proj Manag 19(2):111–118. doi:10.1016/S0263-7863(99)00053-8

    Article  Google Scholar 

  11. Lee JW, Kim SH (2000) Using analytic network process and goal programming for interdependent information system project selection. Comput Oper Res 27(4):367–382. doi:10.1016/S0305-0548(99)00057-X

    Article  MATH  MathSciNet  Google Scholar 

  12. Shanian A, Savadogo O (2006) TOPSIS multiple-criteria decision support analysis for material selection of metallic bipolar plates for polymer electrolyte fuel cell. J Power Sources 159(2):1095–1104. doi:10.1016/j.jpowsour.2005.12.092

    Article  Google Scholar 

  13. Chen MF, Tzeng GH (2004) Combining grey relation and TOPSIS concepts for selecting an expatriate host country. Math Comput Model 40:1473–1490. doi:10.1016/j.mcm.2005.01.006

    Article  MATH  Google Scholar 

  14. Chen CT (2000) Extension of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst 114:1–9. doi:10.1016/S0165-0114(97)00377-1

    Article  MATH  Google Scholar 

  15. Yeh CH, Deng H, Chang YH (2000) Fuzzy multi criteria analysis for performance evaluation of bus companies. Eur J Oper Res 126(3):459–473. doi:10.1016/S0377-2217(99)00315-X

    Article  MATH  Google Scholar 

  16. Yeh CH, Deng H, Pan H (1999) Multi-criteria analysis for dredger dispatching under uncertainty. J Oper Res Soc 50(1):35–43

    Article  MATH  Google Scholar 

  17. Chiou HK, Tzeng GH, Cheng DC (2005) Evaluating sustainable fishing development strategies using fuzzy MCDM approach. Omega 33(3):223–234. doi:10.1016/j.omega.2004.04.011

    Article  Google Scholar 

  18. Ding JF, Liang GS (2005) Using fuzzy MCDM to select partners of strategic alliances for liner shipping. Inf Sci 173(1–3):197–225. doi:10.1016/j.ins.2004.07.013

    Article  MATH  Google Scholar 

  19. Wang J, Lin YT (2003) Fuzzy multicriteria group decision making approach to select configuration items for software development. Fuzzy Sets Syst 134(3):343–363. doi:10.1016/S0165-0114(02)00283-X

    Article  MATH  Google Scholar 

  20. Tsaur H, Chang TY, Yen CH (2002) The evaluation of airline service quality by fuzzy MCDM. Tour Manage 23:107–115. doi:10.1016/S0261-5177(01)00050-4

    Article  Google Scholar 

  21. Chu TC (2002a) Facility location selection using fuzzy TOPSIS under group decisions. Int J Uncertain Fuzziness Knowl-Based Syst 10:687–701. doi:10.1142/S0218488502001739

    Article  MATH  Google Scholar 

  22. Chu TC (2002b) Selecting plant location via a fuzzy TOPSIS approach. Int J Adv Manuf Technol 20:859–864. doi:10.1007/s001700200227

    Article  Google Scholar 

  23. Triantaphyllou E, Lin CT (1996) Development and evaluation of five fuzzy multiattribute decision-making methods. Int J Approx Reason 14:281–310. doi:10.1016/0888-613X(95)00119-2

    Article  MATH  Google Scholar 

  24. Hsu HM, Chen CT (1996) Aggregation of fuzzy opinions under group decision making. Fuzzy Sets Syst 79(3):279–285. doi:10.1016/0165-0114(95)00185-9

    Article  MathSciNet  Google Scholar 

  25. Li RJ (1999) Fuzzy method in group decision making. Comput Math Appl 38(1):91–101. doi:10.1016/S0898-1221(99)00172-8

    Article  MATH  MathSciNet  Google Scholar 

  26. Li DF (2005) Multi attribute decision making models and methods using intuitionistic fuzzy sets. J Comput Syst Sci 70(1):73–85. doi:10.1016/j.jcss.2004.06.002

    Article  MATH  Google Scholar 

  27. Liang GS (1999) Fuzzy MCDM based on ideal and anti-ideal concepts. Eur J Oper Res 112(3):682–691. doi:10.1016/S0377-2217(97)00410-4

    Article  MATH  Google Scholar 

  28. Ölçer İ, Odabaşi AY (2005) A new fuzzy multiple attributive group decision making methodology and its application to propulsion/maneuvering system selection problem. Eur J Oper Res 166(1):93–114. doi:10.1016/j.ejor.2004.02.010

    Article  MATH  Google Scholar 

  29. Olson DL, Wu D (2006) Simulation of fuzzy multiattribute models for grey relationships. Eur J Oper Res 175(1):111–120. doi:10.1016/j.ejor.2005.05.002

    Article  MATH  Google Scholar 

  30. Yeh CH, Deng H (2004) A practical approach to fuzzy utilities comparison in fuzzy multi criteria analysis. Int J Approx Reason 35(2):179–194. doi:10.1016/j.ijar.2003.09.002

    Article  MATH  MathSciNet  Google Scholar 

  31. Chen CB, Klein CM (1997) An efficient approach to solving fuzzy MADM problems. Fuzzy Sets Syst 88(1):51–67. doi:10.1016/S0165-0114(96)00048-6

    Article  MathSciNet  Google Scholar 

  32. Jahanshahlooa GR, Hosseinzadeh Lotfia F, Izadikhah M (2006) An algorithmic method to extend TOPSIS for decision-making problems with interval data. Appl Math Comput 175(2):1375–1384. doi:10.1016/j.amc.2005.08.048

    Article  Google Scholar 

  33. Jahanshahlooa GR, Hosseinzadeh Lotfia F, Izadikhah M (2006) Extension of the TOPSIS method for decision-making problems with fuzzy data. Appl Math Comput 181(2):1544–1551. doi:10.1016/j.amc.2006.02.057

    Article  Google Scholar 

  34. Kaufmann A, Gupta MM (1991) Introduction to fuzzy arithmetic: theory and applications. Van Nostrand-Reinhold, New York

    MATH  Google Scholar 

  35. Yeh H, Kuo YL (2003) Evaluating passenger services of Asia-Pacific international airports. Transp Res Part E 39(1):35–48. doi:10.1016/S1366-5545(02)00017-0

    Article  Google Scholar 

  36. Sadeghpour Gildeh and D. Gien (2001) La distance—D p,q et le cofficient de corrélation entre deux variables aléatoires floues. Actes LFA’2001, pp 97–102, Monse-Belgium

  37. Chen T, Lin CT, Huang SF (2006) A fuzzy approach for supplier evaluation and selection in supply chain management. Int J Prod Econ 102:289–301. doi:10.1016/j.ijpe.2005.03.009

    Article  Google Scholar 

  38. Kuo MS, Tzeng GH, Huang WC (2007) Group decision-making based on concepts of ideal and anti-ideal points in a fuzzy environment. Math Comput Model 45:324–339. doi:10.1016/j.mcm.2006.05.006

    Article  MATH  MathSciNet  Google Scholar 

  39. Saaty TL (1994) Fundamentals of decision making and priority theory with the AHP. RWS Publications, Pittsburgh

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iraj Mahdavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahdavi, I., Heidarzade, A., Sadeghpour-Gildeh, B. et al. A general fuzzy TOPSIS model in multiple criteria decision making. Int J Adv Manuf Technol 45, 406–420 (2009). https://doi.org/10.1007/s00170-009-1971-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-009-1971-5

Keywords

Navigation