Skip to main content
Log in

A critical assessment of the parabolized stability equations

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The parabolized stability equations (PSE) are a ubiquitous tool for studying the stability and evolution of disturbances in weakly nonparallel, convectively unstable flows. The PSE method was introduced as an alternative to asymptotic approaches to these problems. More recently, PSE has been applied with mixed results to a more diverse set of problems, often involving flows with multiple relevant instability modes. This paper investigates the limits of validity of PSE via a spectral analysis of the PSE operator. We show that PSE is capable of accurately capturing only disturbances with a single wavelength at each frequency and that other disturbances are not necessarily damped away or properly evolved, as often assumed. This limitation is the result of regularization techniques that are required to suppress instabilities arising from the ill-posedness of treating a boundary value problem as an initial value problem. These findings are valid for both incompressible and compressible formulations of PSE and are particularly relevant for applications involving multiple modes with different wavelengths and growth rates, such as problems involving multiple instability mechanisms, transient growth, and acoustics. Our theoretical results are illustrated using a generic problem from acoustics and a dual-stream jet, and the PSE solutions are compared to both global solutions of the linearized Navier–Stokes equations and a recently developed alternative parabolization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Andersson, P., Henningson, D., Hanifi, A.: On a stabilization procedure for the parabolic stability equations. J. Eng. Mech. 33, 311–332 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Andersson, P., Berggren, M., Henningson, D.S.: Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11(1), 134–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Batchelor, G.K., Gill, A.E.: Analysis of the stability of axisymmetric jets. J. Fluid Mech. 14(4), 529–551 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertolotti, F., Herbert, T.: Analysis of the linear stability of compressible boundary layers using the pse. Theor. Comput. Fluid Dyn. 3(2), 117–124 (1991)

    Article  MATH  Google Scholar 

  5. Bertolotti, F., Herbert, T., Spalart, P.: Linear and nonlinear stability of the Blasius boundary layer. J. Fluid Mech. 242, 441–474 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouthier, M.: Stabilité linéaire des écoulements presque parallèles. J. de Mec. 11, 599–621 (1972)

    MATH  Google Scholar 

  7. Brès, G.A., Bose, S., Emory, F. M Ham, Schmidt, O.T., Rigas, G., Colonius, T.: Large-eddy simulations of co-annular turbulent jet using a Voronoi-based mesh generation framework. In: AIAA Paper #2018-3302 (2018a)

  8. Brès, G.A., Jordan, P., Le Rallic, M., Jaunet, V., Cavalieri, A.V.G., Towne, A., Lele, S.K., Colonius, T., Schmidt, O.T.: Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets. J. Fluid Mech. 851, 83–124 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, C., Malik, M., Erlebacher, G., Hussaini, M.Y.: Compressible stability of growing boundary layers using parabolized stability equations. In: 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference, Honolulu, HI, USA (1991)

  10. Cheung, L., Lele, S.: Aeroacoustic noise prediction and the dynamics of shear layers and jets using the nonlinear parabolized stability equations. Technical report TF-103 (2007)

  11. Cheung, L., Lele, S.: Linear and nonlinear processes in two-dimensional mixing layer dynamics and sound radiation. J. Fluid Mech. 625, 321–351 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crighton, D.G., Gaster, M.: Stability of slowly diverging jet flow. J. Fluid Mech. 77, 397–413 (1976)

    Article  MATH  Google Scholar 

  13. Day, M., Mansour, N., Reynolds, W.: Nonlinear stability and structure of compressible reacting mixing layers. J. Fluid Mech. 446, 375–408 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Fedorov, A.: Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 79–95 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gaster, M.: On the effects of boundary-layer growth on flow stability. J. Fluid Mech. 66(3), 465–480 (1974)

    Article  MATH  Google Scholar 

  16. Gudmundsson, K., Colonius, T.: Instability wave models for the near-field fluctuations of turbulent jets. J. Fluid Mech. 689, 97–128 (2011)

    Article  MATH  Google Scholar 

  17. Hack, M., Moin, P.: Algebraic disturbance growth by interaction of orr and lift-up mechanisms. J. Fluid Mech. 829, 112–126 (2017)

    Article  MathSciNet  Google Scholar 

  18. Haj-Hariri, H.: Characteristics analysis of the parabolized stability equations. Stud. Appl. Math. 92(1), 41–53 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Herbert, T.: Parabolized stability equations. In: AGARD-R-793 Special Course on Progress in Transition Modelling (1994)

  20. Herbert, T.: Parabolized stability equations. Annu. Rev. Fluid Mech. 29, 245–283 (1997)

    Article  MathSciNet  Google Scholar 

  21. Huerre, P., Monkewitz, P.A.: Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473–537 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jordan, P., Colonius, T.: Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45, 173–195 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jordan, P., Colonius, T., Bres, G.A., Zhang, M., Towne, A., Lele, S.: Modeling intermittent wavepackets and their radiated sound in a turbulent jet. Technical report. In: Proceedings of the Center for Turbulence Research summer program (2014)

  24. Kreiss, H., Lorenz, J.: Initial-Boundary Problems and the Navier-Stokes. Equation Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (2004)

    Book  Google Scholar 

  25. Li, F., Malik, M.R.: On the nature of PSE approximation. Theoret. Comput. Fluid Dyn. 8, 253–273 (1996)

    Article  MATH  Google Scholar 

  26. Li, F., Malik, M.R.: Spectral analysis of the parabolized stability equations. Comput. Fluids 26(3), 279–297 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Malik, M., Li, F., Chang, C.L.: Crossflow disturbances in three-dimensional boundary layers: nonlinear development, wave interaction and secondary instability. J. Fluid Mech. 268, 1–36 (1994)

    Article  MATH  Google Scholar 

  28. Paredes, P., Choudhari, M.M., Li, F.: Transition due to streamwise streaks in a supersonic flat plate boundary layer. Phys. Rev. Fluids 1(8), 083,601 (2016)

    Article  Google Scholar 

  29. Pralits, J.O., Airiau, C., Hanifi, A., Henningson, D.S.: Sensitivity analysis using adjoint parabolized stability equations for compressible flows. Flow Turbul. Combust. 65(3–4), 321–346 (2000)

    Article  MATH  Google Scholar 

  30. Ran, W., Zare, A., Hack, M., Jovanović, M.: Low-complexity stochastic modeling of spatially-evolving flows. Technical report. In: Proceedings of the Center for Turbulence Research summer program (2016)

  31. Rigas, G., Colonius, T., Beyar, M.: Stability of wall-bounded flows using one-way spatial integration of Navier-Stokes equations. In: AIAA Paper #2017-1881 (2017a)

  32. Rigas, G., Schmidt, O.T., Colonius, T., Brès, G.A.: One way Navier-Stokes and resolvent analysis for modeling coherent structures in a supersonic turbulent jet. In: AIAA Paper #2017-4046 (2017b)

  33. Rodríguez, D., Jotkar, M.R., Gennaro, E.M.: Wavepacket models for subsonic twin jets using 3d parabolized stability equations. Compt. Rend. Mècanique 346(10), 890–902 (2018). (jet noise modelling and control/Modélisation et contrôle du bruit de jet)

    Article  Google Scholar 

  34. Saric, W.S., Reed, H.L., Kerschen, E.J.: Boundary-layer receptivity to freestream disturbances. Annu. Rev. Fluid Mech. 34(1), 291–319 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows, vol. 142. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  36. Schmidt, O.T., Towne, A., Colonius, T., Cavalieri, A.V.G., Jordan, P., Brès, G.A.: Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability. J. Fluid Mech. 825, 1153–1181 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sinha, A., Rodriguez, D., Bres, G., Colonius, T.: Wavepacket models for supersonic jet noise. J. Fluid Mech. 742, 71–95 (2014)

    Article  Google Scholar 

  38. Sinha, A., Gaitonde, D., Sohoni, N.: Parabolized stability analysis of dual-stream jets. In: AIAA Paper #2016-3057 (2016)

  39. Tam, C.K.W., Hu, F.Q.: On the three families of instability waves of high-speed jets. J. Fluid Mech. 201, 447–483 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tempelmann, D., Hanifi, A., Henningson, D.S.: Spatial optimal growth in three-dimensional boundary layers. J. Fluid Mech. 646, 5–37 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Towne, A.: Advancements in jet turbulence and noise modeling: accurate one-way solutions and empirical evaluation of the nonlinear forcing of wavepackets. PhD thesis, California Institute of Technology (2016)

  42. Towne, A., Colonius, T.: Improved parabolization of the Euler equations. In: AIAA Paper #2013-2171 (2013)

  43. Towne, A., Colonius, T.: Continued development of the one-way Euler equations: application to jets. In: AIAA Paper #2014-2903 (2014)

  44. Towne, A., Colonius, T.: One-way spatial integration of hyperbolic equations. J. Comput. Phys. 300, 844–861 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Towne, A., Cavalieri, A.V.G., Jordan, P., Colonius, T., Schmidt, O., Jaunet, V., Brès, G.A.: Acoustic resonance in the potential core of subsonic jets. J. Fluid Mech. 825, 1113–1152 (2017)

    Article  MATH  Google Scholar 

  46. Zhang, X.C., Ran, L.K., Sun, D.J., Wan, Z.H.: Optimal ‘quiet’ inlet perturbation using adjoint-based PSE in supersonic jets. Fluid Dyn. Res. 50(4), 045,504 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

A.T. gratefully acknowledges support from NASA Grant No. NNX15AU93A. G.R. and T.C. acknowledge support from ONR Grant N00014-16-1-2445 and The Boeing Company under Strategic Research and Development Relationship Agreement CT-BA-GTA-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Towne.

Additional information

Communicated by Vassilios Theofilis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Towne, A., Rigas, G. & Colonius, T. A critical assessment of the parabolized stability equations. Theor. Comput. Fluid Dyn. 33, 359–382 (2019). https://doi.org/10.1007/s00162-019-00498-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-019-00498-8

Keywords

Navigation