Skip to main content
Log in

Spreading dynamics of droplet on an inclined surface

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A three-dimensional unsteady theoretical model of droplet spreading process on an inclined surface is developed and numerically analyzed to investigate the droplet spreading dynamics via the lattice Boltzmann simulation. The contact line motion and morphology evolution for the droplet spreading on an inclined surface, which are, respectively, represented by the advancing/receding spreading factor and droplet wetted length, are evaluated and analyzed. The effects of surface wettability and inclination on the droplet spreading behaviors are examined. The results indicate that, dominated by gravity and capillarity, the droplet experiences a complex asymmetric deformation and sliding motion after the droplet comes into contact with the inclined surfaces. The droplet firstly deforms near the solid surface and mainly exhibits a radial expansion flow in the start-up stage. An evident sliding-down motion along the inclination is observed in the middle stage. And the surface-tension-driven retraction occurs during the retract stage. Increases in inclination angle and equilibrium contact angle lead to a faster droplet motion and a smaller wetted area. In addition, increases in equilibrium contact angle lead to a shorter duration time of the middle stage and an earlier entry into the retract stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wijshoff H.: The dynamics of the piezo inkjet printhead operation. Phys. Rep. 491(4), 77–177 (2010)

    Article  Google Scholar 

  2. Zhao Y.J., Zhao X.W., Sun C., Li J., Zhu R., Gu Z.Z.: Encoded silica colloidal crystal beads as supports for potential multiplex immunoassay. Anal. Chem. 80(5), 1598–1605 (2008)

    Article  Google Scholar 

  3. Zhao, Y.J., Zhao, X.W., Hu, J., Xu, M., Zhao, W.J., Sun, L.G., Zhu, C., Xu, H., Gu, Z.Z.: Encoded porous beads for label-free multiplex detection of tumor markers. Adv. Mater 21, 569–572 (2009)

    Article  Google Scholar 

  4. De Gennes P.G.: Wetting: statics and dynamics. Rev. Mod. Phys. 57(3), 827 (1985)

    Article  Google Scholar 

  5. Bonn D., Eggers J., Indekeu J., Meunier J., Rolley E.: Wetting and spreading. Rev. Mod. Phys. 81(2), 739 (2009)

    Article  Google Scholar 

  6. Bergeron V., Bonn D., Martin J.Y., Vovelle L.: Controlling droplet deposition with polymer additives. Nature 405(6788), 772–775 (2000)

    Article  Google Scholar 

  7. Xie J., Xu J.L., Xing F., Wang Z.X., Liu H.: The phase separation concept condensation heat transfer in horizontal tubes for low-grade energy utilization. Energy 69, 787–800 (2014)

    Article  Google Scholar 

  8. Biance A.L., Clanet C., Quéré D.: First steps in the spreading of a liquid droplet. Phys. Rev. E 69(1), 016301 (2004)

    Article  Google Scholar 

  9. Bird J.C., Mandre S., Stone H.A.: Short-time dynamics of partial wetting. Phys. Rev. Lett. 100(23), 234501 (2008)

    Article  Google Scholar 

  10. Huh C., Scriven L.: Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35(1), 85–101 (1971)

    Article  Google Scholar 

  11. Tanner L.: The spreading of silicone oil drops on horizontal surfaces. J. Phys. D Appl. Phys. 12(9), 1473 (1979)

    Article  Google Scholar 

  12. Winkels K.G., Weijs J.H., Eddi A., Snoeijer J.H.: Initial spreading of low-viscosity drops on partially wetting surfaces. Phys. Rev. E 85(5), 055301 (2012)

    Article  Google Scholar 

  13. Bussmann M., Mostaghimi J., Chandra S.: On a three-dimensional volume tracking model of droplet impact. Phys. Fluids 11(6), 1406–1417 (1999)

    Article  MATH  Google Scholar 

  14. Šikalo Š., Tropea C., Ganić E.N.: Impact of droplets onto inclined surfaces. J. Colloid Interface Sci. 286(2), 661–669 (2005)

    Article  Google Scholar 

  15. Reznik S., Yarin A.: Spreading of a viscous drop due to gravity and capillarity on a horizontal or an inclined dry wall. Phys. Fluids 14, 118–132 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fukai J., Shiiba Y., Yamamoto T., Miyatake O., Poulikakos D., Megaridis C., Zhao Z.: Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modeling. Phys. Fluids 7, 236 (1995)

    Article  Google Scholar 

  17. Gunjal P.R., Ranade V.V., Chaudhari R.V.: Dynamics of drop impact on solid surface: experiments and VOF simulations. AlChE J. 51(1), 59–78 (2005)

    Article  Google Scholar 

  18. Šikalo Š., Wilhelm H.-D., Roisman I., Jakirlić S., Tropea C.: Dynamic contact angle of spreading droplets: experiments and simulations. Phys. Fluids 17, 062103 (2005)

    Article  MATH  Google Scholar 

  19. Sussman M., Smereka P., Osher S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)

    Article  MATH  Google Scholar 

  20. Pasandideh-Fard M., Chandra S., Mostaghimi J.: A three-dimensional model of droplet impact and solidification. Int. J. Heat Mass Transf. 45(11), 2229–2242 (2002)

    Article  MATH  Google Scholar 

  21. Lunkad S.F., Buwa V.V., Nigam K.: Numerical simulations of drop impact and spreading on horizontal and inclined surfaces. Chem. Eng. Sci. 62(24), 7214–7224 (2007)

    Article  Google Scholar 

  22. Unverdi S.O., Tryggvason G.: A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100(1), 25–37 (1992)

    Article  MATH  Google Scholar 

  23. Sun D.K., Bo Z.: Numerical simulation of hydrodynamic focusing of particles in straight channel flows with the immersed boundary-lattice Boltzmann method. Int. J. Heat Mass Transf. 80, 139–149 (2015)

    Article  Google Scholar 

  24. Tian F.B., Luo H.X., Zhu L.D., Liao J.C., Lu X.Y.: An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments. J. Comput. Phys. 230(19), 7266–7283 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liao Q., Yang Y.X., Zhu X., Chen R.: Lattice Boltzmann simulation of substrate solution through a porous granule immobilized PSB-cell for biohydrogen production. Int. J. Hydrog. Energy 38(35), 15700–15709 (2013)

    Article  Google Scholar 

  26. Shan X.W., Chen H.D.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47(3), 1815 (1993)

    Article  Google Scholar 

  27. Attar E., Körner C.: Lattice Boltzmann method for dynamic wetting problems. J. Colloid Interface Sci. 335(1), 84–93 (2009)

    Article  Google Scholar 

  28. Kamali M., Gillissen J., Sundaresan S., Vanden Akker H.: Contact line motion without slip in lattice Boltzmann simulations. Chem. Eng. Sci. 66(14), 3452–3458 (2011)

    Article  Google Scholar 

  29. Xing X.Q., Butler D.L., Ng S.H., Wang Z.F., Danyluk S., Yang C.: Simulation of droplet formation and coalescence using lattice Boltzmann-based single-phase model. J. Colloid Interface Sci. 311(2), 609–618 (2007)

    Article  Google Scholar 

  30. Gunstensen A.K., Rothman D.H., Zaleski S., Zanetti G.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43(8), 4320 (1991)

    Article  Google Scholar 

  31. Swift M.R., Osborn W.R., Yeomans J.M.: Lattice Boltzmann Simulation of Nonideal Fluids. Phys. Rev. Lett. 75(5), 830–833 (1995)

    Article  Google Scholar 

  32. Körner C., Thies M., Hofmann T., Thürey N., Rüde U.: Lattice Boltzmann model for free surface flow for modeling foaming. J. Stat. Phys. 121(1–2), 179–196 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Castrejon-Pita J.R., Betton E.S., Kubiak K.J., Wilson M.C.T., Hutchings I.M.: The dynamics of the impact and coalescence of droplets on a solid surface. Biomicrofluidics 5(1), 014112 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongping Chen.

Additional information

Communicated by S. Balachandar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Yu, C. & Chen, Y. Spreading dynamics of droplet on an inclined surface. Theor. Comput. Fluid Dyn. 30, 237–252 (2016). https://doi.org/10.1007/s00162-015-0377-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-015-0377-2

Keywords

Navigation