Skip to main content

Advertisement

Log in

Waves in strong centrifugal fields: dissipationless gas

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Linear waves are investigated in a rotating gas under the condition of strong centrifugal acceleration of the order 106 g realized in gas centrifuges for separation of uranium isotopes. Sound waves split into three families of the waves under these conditions. Dispersion equations are obtained. The characteristics of the waves strongly differ from the conventional sound waves on polarization, velocity of propagation and distribution of energy of the waves in space for two families having frequencies above and below the frequency of the conventional sound waves. The energy of these waves is localized in rarefied region of the gas. The waves of the third family were not specified before. They propagate exactly along the rotational axis with the conventional sound velocity. These waves are polarized only along the rotational axis. Radial and azimuthal motions are not excited. Energy of the waves is concentrated near the wall of the rotor where the density of the gas is largest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rayleigh, L.: On the circulation of air observed in Kundt’s tubes, and on some allied acoustical problems. Philos. Trans. R. Soc. Lond. Ser. A 175, 1–21 (1884)

  2. Borisevich, V.D., Borman, V.D., Sulaberidze, G.A. et al.: Fizicheskie osnovy razdeleniya isotopov v gazovoi centrifuge (Physical basics of the isotope separation in gas centrifuge), 2011, Moscow, “Izdatel’skii dom MEI”, in Russian

  3. Glaser A.: Characteristics of the gas centrifuge for uranium enrichment and their relevance for nuclear weapon proliferation. Sci. Glob. Secur. 16(12), 1–26 (2008)

    Article  Google Scholar 

  4. Rayleigh L.: The Theory of Sound. MacMillan, London (1896)

    MATH  Google Scholar 

  5. Broman, G.I., Rudenko, O.V.: Submerged Landau jet: exact solutions, their meaning and application. Phys. Usp. 53, 91–98 (2010)

  6. Eckart C.: Hydrodynamics of Oceans and Atmospheres. Pergamon Press, London (1960)

    MATH  Google Scholar 

  7. Greenspan H.P.: The Theory of Rotating Fluids. Cambridge University Press, Cambridge (1968)

    MATH  Google Scholar 

  8. Le Blond P.H., Mysak L.A.: Waves in the Ocean. Elsevier, Amsterdam (1978)

    Google Scholar 

  9. Gossard E.E., Hooke W.H.: Waves in the Atmosphere. Elsevier, Amsterdam (1975)

    Google Scholar 

  10. Phillips O.M.: Centrifugal waves. J. Fluid Mech. 7(03), 340–352 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lee C., Peng H., Yuan H., Wu J., Zhou M., Hussain F.: Experimental studies of surface waves inside a cylindrical container. J. Fluid Mech. 677, 39–62 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Berman A.S., Lundgren T.S., Cheng A.: Asynchronous whirl in a rotating cylinder partially filled with liquid. J. Fluid Mech. 150, 311–327 (1985)

    Article  MATH  Google Scholar 

  13. Duguet, Y., Scott, J.F., Le Penven, L.: Oscillatory jets and instabilities in a rotating cylinder. Phys. Fluids 18(10), 104104 (2006)

  14. Mansour N.N., Lundgren T.S.: Three-dimensional instability of rotating flows with oscillating axial strain. Phys. Fluids A 2, 2089 (1990)

    Article  Google Scholar 

  15. Duguet Y., Scott J.F., Le Penven L.: Instability inside a rotating gas cylinder subject to axial periodic strain. Phys. Fluids 17(11), 114103 (2005)

    Article  Google Scholar 

  16. Racz J.P., Scott J.F.: Parametric instability in a rotating cylinder of gas subject to sinusoidal axial compression. Part 1. Linear theory. J. Fluid Mech. 595, 265–290 (2008)

    MATH  MathSciNet  Google Scholar 

  17. Racz J.P., Scott J.F.: Parametric instability in a rotating cylinder of gas subject to sinusoidal axial compression. Weakly nonlinear theory Part 2. J. Fluid Mech. 595, 291–321 (2008)

    MATH  MathSciNet  Google Scholar 

  18. Lopez J.M., Marques F.: Rapidly rotating cylinder flow with an oscillating sidewall. Phys. Rev. E 89, 013013 (2014)

    Article  Google Scholar 

  19. Erofeev V.I., Soldatov I.N.: Acoustic waves in a rotating ideal gas. Acoust. Phys. 46(5), 563–568 (2000)

    Article  Google Scholar 

  20. Sokolsky A.A., Sudchikov V.I.: Generalized radial oscillation modes of an acoustical medium rotating in a cylinder. Acoust. Phys. 53(5), 564–571 (2007)

    Article  Google Scholar 

  21. Landau L.D., Lifshitz E.M.: Fluid Mechanics. Butterworth-Heinemann, Oxford (1987)

    MATH  Google Scholar 

  22. Landau L.D., Lifshitz E.M.: Fluid Mechanics. Fizmatlit, Moscow (2001)

    Google Scholar 

  23. Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1964)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Bogovalov.

Additional information

Communicated by Daniel J. Bodony.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogovalov, S.V., Kislov, V.A. & Tronin, I.V. Waves in strong centrifugal fields: dissipationless gas. Theor. Comput. Fluid Dyn. 29, 111–125 (2015). https://doi.org/10.1007/s00162-015-0344-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-015-0344-y

Keywords

Navigation