Skip to main content
Log in

Transformation-induced plasticity in high-temperature shape memory alloys: a one-dimensional continuum model

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A constitutive model based on isotropic plasticity consideration is presented in this work to model the thermo-mechanical behavior of high-temperature shape memory alloys. In high-temperature shape memory alloys (HTSMAs), both martensitic transformation and rate-dependent plasticity (creep) occur simultaneously at high temperatures. Furthermore, transformation-induced plasticity is another deformation mechanism during martensitic transformation. All these phenomena are considered as dissipative processes to model the mechanical behavior of HTSMAs in this study. The constitutive model was implemented for one-dimensional cases, and the results have been compared with experimental data from thermal cycling test for actuator applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller D.A., Lagoudas D.C.: Thermomechanical characterization of niticu and niti sma actuators: influence of plastic strains. Smart. Mater. Struct. 9(5), 640–652 (2000)

    Article  ADS  Google Scholar 

  2. Ma J., Karaman I., Kockar B., Maier H.J., Chumlyakov Y.I.: Severe plastic deformation of Ti74Nb26 shape memory alloys. Mater. Sci. Eng. A-Struct. 528(25–26), 7628–7635 (2011)

    Article  Google Scholar 

  3. Dadda J., Maier H.J., Niklasch D., Karaman I., Karaca H.E., Chumlyakov Y.I.: Pseudoelasticity and cyclic stability in Co49Ni21Ga30 shape-memory alloy single crystals at ambient temperature. Metall. Mater. Trans. A. 39(9), 2026–2039 (2008)

    Article  Google Scholar 

  4. Lexcellent C., Bourbon G.: Thermodynamical model of cyclic behaviour of Ti-Ni and Cu-Zn-Al shape memory alloys under isothermal undulated tensile tests. Mech. Mater. 24(1), 59–73 (1996)

    Article  Google Scholar 

  5. Cherkaoui M., Berveiller M., Lemoine X.: Couplings between plasticity and martensitic phase transformation: overall behavior of polycrystalline TRIP steels. Int. J. Plast. 16(10–11), 1215–1241 (2000)

    Article  MATH  Google Scholar 

  6. Fischer F.D., Reisner G., Werner E., Tanaka K., Cailletaud G., Antretter T.: A new view on transformation induced plasticity (TRIP). Int. J. Plast. 16(7–8), 723–748 (2000)

    Article  MATH  Google Scholar 

  7. Entchev P.B., Lagoudas D.C.: Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs. Mech. Mater. 36(9), 865–892 (2004)

    Article  Google Scholar 

  8. Bo Z., Lagoudas D.C.: Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect. Int. J. Eng. Sci. 37(9), 1205–1249 (1999)

    Article  MATH  Google Scholar 

  9. Boyd JG., Lagoudas DC.: A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy. Int. J. Plast. 12(6), 805–842 (1996)

    Article  MATH  Google Scholar 

  10. Qidwai M.a., Lagoudas D.C.: On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material. Int. J. Plast. 16(10–11), 1309–1343 (2000)

    Article  MATH  Google Scholar 

  11. Lagoudas D.C., Chatzigeorgiou G., Kumar P.K.: Modeling and experimental study of simultaneous creep and transformation in polycrystalline high-temperature shape memory Alloys. J. Intell. Mater. Syst. Struct. 20(18), 2257–2267 (2009)

    Article  Google Scholar 

  12. Hartl D.J., Chatzigeorgiou G., Lagoudas D.C.: Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys. Int. J. Plast. 26(10), 1485–1507 (2010)

    Article  MATH  Google Scholar 

  13. Kumar P.K., Lagoudas D.C.: Experimental and microstructural characterization of simultaneous creep, plasticity and phase transformation in Ti50Pd30Ni20 high-temperature shape memory alloy. Acta. Mater. 58(5), 1618–1628 (2010)

    Article  Google Scholar 

  14. Kumar P.K., Desai U., Monroe J.A., Lagoudas D.C., Karaman I., Bigelow G., Noebe R.D.: Experimental investigation of simultaneous creep, plasticity and transformation of Ti50.5Pd30Ni19.5 high temperature shape memory alloy during cyclic actuation. Mat. Sci. Eng. A-Struct. 530, 117–127 (2011)

    Article  Google Scholar 

  15. Monroe J.A., Karaman I., Lagoudas D.C., Bigelow G., Noebe R.D., Padula S.: Determining recoverable and irrecoverable contributions to accumulated strain in a nitipd high-temperature shape memory alloy during thermomechanical cycling. Scr. Mater. 65(2), 123–126 (2011)

    Article  Google Scholar 

  16. Chemisky Yves, Chatzigeorgiou G., Kumar P., Lagoudas D.C.: A constitutive model for cyclic actuation of high-temperature shape memory alloys. Mech. Mater. 68, 120–136 (2014)

    Article  Google Scholar 

  17. Leblond J.B., Devaux J., Devaux J.C.: Mathematical-modeling of transformation plasticity in steels. 1. case of ideal-plastic phases. Int. J. Plast. 5(6), 551–572 (1989)

    Article  Google Scholar 

  18. Sakhaei, A.H., Lim, K., Thamburaja, P.: A link between the phenomenological and physical modelling of transformation-induced plasticity. In Computational Plasticity XII: Fundamentals and Applications - Proceedings of the 12th International Conference on Computational Plasticity - Fundamentals and Applications, COMPLAS 2013, 1403–1414(2013)

  19. Ren X.B., Otsuka K.: Universal symmetry property of point defects in crystals. Phys. Rev. Lett. 85(5), 1016–1019 (2000)

    Article  ADS  Google Scholar 

  20. Hane K.F., Shield T.W.: Microstructure in a cubic to orthorhombic transition. J. Elast. 59(1–3), 267–318 (2000)

    Article  MATH  Google Scholar 

  21. Ball J.M., James R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100(1), 13–52 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hosein Sakhaei.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhaei, A.H., Lim, KM. Transformation-induced plasticity in high-temperature shape memory alloys: a one-dimensional continuum model. Continuum Mech. Thermodyn. 28, 1039–1047 (2016). https://doi.org/10.1007/s00161-015-0450-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0450-5

Keywords

Navigation