Skip to main content
Log in

A numerical method for determining the strain rate intensity factor under plane strain conditions

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Using the classical model of rigid perfectly plastic solids, the strain rate intensity factor has been previously introduced as the coefficient of the leading singular term in a series expansion of the equivalent strain rate in the vicinity of maximum friction surfaces. Since then, many strain rate intensity factors have been determined by means of analytical and semi-analytical solutions. However, no attempt has been made to develop a numerical method for calculating the strain rate intensity factor. This paper presents such a method for planar flow. The method is based on the theory of characteristics. First, the strain rate intensity factor is derived in characteristic coordinates. Then, a standard numerical slip-line technique is supplemented with a procedure to calculate the strain rate intensity factor. The distribution of the strain rate intensity factor along the friction surface in compression of a layer between two parallel plates is determined. A high accuracy of this numerical solution for the strain rate intensity factor is confirmed by comparison with an analytic solution. It is shown that the distribution of the strain rate intensity factor is in general discontinuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov S., Richmond O.: Singular plastic flow fields near surfaces of maximum friction stress. Int. J. Non Linear Mech. 36, 1–11 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atkins A.G., Rowe G.W., Johnson W.: Shear strains and strain—rates in kinematically admissible velocity fields. Int. J. Mech. Eng. Educ. 10, 265–278 (1982)

    Google Scholar 

  3. Alexandrov S.: The strain rate intensity factor and its applications: a review. Mater. Sci. Forum 623, 1–20 (2009)

    Article  MathSciNet  Google Scholar 

  4. Alexandrov S., Lyamina E.: Singular solutions for plane plastic flow of pressure-dependent materials. Dokl. Phys. 47, 308–311 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  5. Alexandrov S., Jeng Y.-R.: Singular rigid/plastic solutions in anisotropic plasticity under plane strain conditions. Cont. Mech. Therm. 25, 685–689 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. Alexandrov S., Mustafa Y.: Singular solutions in viscoplasticity under plane strain conditions. Meccanica 48, 2203–2208 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alexandrov S., Jeng Y.-R.: Influence of pressure—dependence of the yield criterion on the strain-rate-intensity factor. J. Eng. Math. 71, 339–348 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen J.-C., Pan C., Rogue C.M.O.L., Wang H.-P.: A Lagrangian reproducing kernel particle method for metal forming analysis. Comp. Mech. 22, 289–307 (1998)

    Article  ADS  MATH  Google Scholar 

  9. Fries T.-P., Belytschko T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Meth. Eng. 84, 253–304 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Hill R.: The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1950)

    MATH  Google Scholar 

  11. Hill R., Lee E.H., Tupper S.J.: A method of numerical analysis of plastic flow in plane strain and its application to the compression of a ductile material between rough plates. Trans. ASME J. Appl. Mech. 18, 46–52 (1951)

    MathSciNet  MATH  Google Scholar 

  12. Ewing D.J.F.: A series-method for constructing plastic slipline fields. J. Mech. Phys. Solids 15, 105–114 (1967)

    Article  ADS  MATH  Google Scholar 

  13. Ewing D.J.F.: A mass-flux method for deducing dimensions of plastic slipline fields. J. Mech. Phys. Solids 16, 267–272 (1968)

    Article  ADS  Google Scholar 

  14. Collins I.F.: The algebraic-geometry of slip line fields with applications to boundary value problems. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 303, 317–338 (1968)

    Article  ADS  MATH  Google Scholar 

  15. Bachrach B.I., Samanta S.K.: A numerical method for computing plane plastic slip - line fields. Trans. ASME J. Appl. Mech. 43, 97–101 (1976)

    Article  ADS  MATH  Google Scholar 

  16. Sheppard T.: Prediction of structure during shaped extrusion and subsequent static recrystallisation during the solution soaking operation. J. Mater. Process. Technol. 177, 26–35 (2006)

    Article  Google Scholar 

  17. Griffiths B.J.: Mechanisms of white layer generation with reference to machining and deformation processes. Trans. ASME J. Trib. 109, 525–530 (1987)

    Article  Google Scholar 

  18. Moylan S.P., Kompella S., Chandrasekar S., Farris T.N.: A new approach for studying mechanical properties of thin surface layers affected by manufacturing processes. Trans. ASME J. Manufact. Sci. Eng. 125, 310–315 (2003)

    Article  Google Scholar 

  19. Murai T., Matsuoka S., Miyamoto S., Oki Y.: Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions. J. Mater. Process. Technol. 141, 207–212 (2003)

    Article  Google Scholar 

  20. Kajino S., Asakawa M.: Effect of “additional shear strain layer” on tensile strength and microstructure of fine drawn wire. J. Mater. Process. Technol. 177, 704–708 (2006)

    Article  Google Scholar 

  21. Trunina T.A., Kokovkhin E.A.: Formation of a finely dispersed structure in steel surface layers under combined processing using hydraulic pressing. J. Mach. Manuf. Reliab. 37, 160–162 (2008)

    Article  Google Scholar 

  22. Alexandrov S., Grabko D., Shikimaka O.: The determination of the thickness of a layer of intensive deformations in the vicinity of the friction surface in metal forming processes. J. Mach. Manuf. Reliab. 38, 277–282 (2009)

    Article  Google Scholar 

  23. Sasaki T.T., Morris R.A., Thompson G.B., Syarif Y., Fox D.: Formation of ultra-fine copper grains in copper-clad aluminum wire. Scripta Mater. 63, 488–491 (2010)

    Article  Google Scholar 

  24. Thirumurugan M., Rao S.A., Kumaran S., Rao T.S.: Improved ductility in ZM21 magnesium–aluminium macrocomposite produced by co-extrusion. J. Mater. Process. Technol. 211, 1637–1642 (2011)

    Article  Google Scholar 

  25. Lemaitre J.: A continuous damage mechanics model for ductile fracture. Trans. ASME J. Eng. Mater. Technol. 107, 83–89 (1985)

    Article  Google Scholar 

  26. Bontcheva N., Petzov G.: Microstructure evolution during metal forming processes. Comp. Mater. Sci. 28, 563–573 (2003)

    Article  MATH  Google Scholar 

  27. Xu B., Qu J., Jin Q.: Deformation behaviour of the hot upsetting cylindrical specimen with dynamic recrystallization. Int. J. Mech. Sci. 48, 190–197 (2006)

    Article  MATH  Google Scholar 

  28. Luo J., Li M., Li X., Shi Y.: Constitutive model for high temperature deformation of titanium alloys using internal state variables. Mech. Mater. 42, 157–165 (2010)

    Article  ADS  Google Scholar 

  29. Kanninen M.F., Popelar C.H.: Advanced Fracture Mechanics. Oxford University Press, New York (1985)

    MATH  Google Scholar 

  30. Alexandrov S., Lyamina E.: Prediction of fracture in the vicinity of friction surfaces in metal forming processes. J. Appl. Mech. Techn. Phys. 47, 757–761 (2006)

    Article  ADS  MATH  Google Scholar 

  31. Alexandrov S., Lyamina E.: On constructing the theory of ductile fracture near friction surfaces. J. Appl. Mech. Techn. Phys. 52, 657–663 (2011)

    Article  ADS  MATH  Google Scholar 

  32. Prandtl L.: Anwendungsbeispiele zu einem Henckyschen Salz uber das plastische Gleichgewicht. ZAMM 3, 401–406 (1923)

    Article  ADS  MATH  Google Scholar 

  33. Das N.S., Banerjee J., Collins I.F.: Plane strain compression of rigid—perfectly plastic strip between parallel dies with slipping friction. Trans. ASME J. Appl. Mech. 46, 317–321 (1979)

    Article  ADS  MATH  Google Scholar 

  34. Spencer A.J.M.: A theory of the kinematics of ideal soils under plane strain conditions. J. Mech. Phys. Solids 12, 337–351 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Harris D.: Constitutive equations for planar deformations of rigid-plastic materials. J. Mech. Phys. Solids 41, 1515–1531 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Alexandrov S., Harris D.: Comparison of solution behaviour for three models of pressure-dependent plasticity: a simple analytical example. Int. J. Mech. Sci. 48, 750–762 (2006)

    Article  MATH  Google Scholar 

  37. Alexandrov S., Mishuris G.: Qualitative behaviour of viscoplastic solutions in the vicinity of maximum-friction surfaces. J. Eng. Math. 65, 143–156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rice J.R.: Plane strain slip line theory for anisotropic rigid/plastic materials. J. Mech. Phys. Solids 21, 63–74 (1973)

    Article  ADS  MATH  Google Scholar 

  39. Chitkara N.R., Collins I.F.: A graphical technique for constructing anisotropic slip – line fields. Int. J. Mech. Sci. 16, 241–248 (1974)

    Article  MATH  Google Scholar 

  40. Harris D.: On the numerical integration of the stress equilibrium equations governing the ideal plastic plane deformation of a granular material. Acta Mech. 55, 219–238 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-R. Jeng.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, S., Kuo, CY. & Jeng, YR. A numerical method for determining the strain rate intensity factor under plane strain conditions. Continuum Mech. Thermodyn. 28, 977–992 (2016). https://doi.org/10.1007/s00161-015-0436-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0436-3

Keywords

Navigation