Skip to main content
Log in

Dynamic analysis: a new point of view

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this article, an alternative to the classical dynamic equation formulation is presented. To achieve this goal, we need to derive the reciprocal theorem in rates and the principle of virtual work in rates, in a small deformation regime, with which we will be able to obtain an expression for damping force. In this new formulation, some terms that are not commonly considered in the classical formulation appear, e.g., the term that is function of jerk (the rate of change of acceleration). Moreover, in this formulation the term that characterizes material nonlinearity, in dynamic analysis, appears naturally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

Continuum medium

\({[{\bf{B}}]}\) :

Derivative of shape function matrix

\({\vec{{\bf{b}}}}\) :

Body force (per unit mass)

\({{\bf{C}}^{e}}\) :

Elasticity tensor (fourth-order tensor)

\({[{\it{\bf{C}}}}]\) :

Elasticity matrix (Voigt notation)

\({[{\bf{D}}]}\) :

Damping matrix

dV :

Volume element

\({\{{\bf d}\}}\) :

Nodal displacement vector

\({\{{\dot{\bf d}}\}}\) :

Nodal velocity vector

\({\{{\ddot{\bf d}}\}}\) :

Nodal acceleration vector

\({\{\dddot{\bf d}\}}\) :

Nodal jerk vector

\({\{\it{\bf{F}}^{({\rm Damp})}\}}\) :

Nodal damping force vector

\({\{\it{\bf{F}}^{(B)}\}}\) :

Nodal body force vector

\({\{\it{\bf{F}}^{(S)}\}}\) :

Nodal surface force vector

\({[{\bf{G}}^{\vec{{\bf{t}}}}]}\) :

Interpolation matrix for the traction vector

k :

Elastic constant of spring

\({[{\bf{K}}]}\) :

Stiffness matrix

\({[{\bf{M}}]}\) :

Mass matrix

\({\hat{{\bf{n}}}}\) :

Outward unit normal to the boundary

\({[{\bf{N}}]}\) :

Shape function matrix

\({[{\bf{N}}^{\vec{{\bf{t}}}}]}\) :

Shape function for traction vector

S :

Boundary of B

\({\vec{\bf{t}}{}^{(\hat{{\bf{n}}})}}\) :

Traction vector

t :

Time; \({\Delta t}\) —time increment

\({\vec{{\bf{u}}}}\) :

Displacement field

\({\dot{\vec{{\bf{u}}}}}\) :

Velocity field

\({\ddot{\vec{{\bf{u}}}}}\) :

Acceleration field

\({{\dddot{\vec{{\bf{u}}}}}}\) :

Jerk field

\({\vec{{\bf{\it{x}}}}}\) :

Vector position

\({\alpha, \xi }\) :

Damping coefficients

\({\boldsymbol{\varepsilon} }\) :

Infinitesimal strain tensor (2nd order tensor)

\({\rho }\) :

Mass density

\({\boldsymbol{\sigma}}\) :

Cauchy stress tensor (2nd order tensor)

\({\varPsi ^{e}}\) :

Strain energy density

\({({\bullet})^{\rm T}}\) :

Transpose of \({({\bullet})}\)

\({({\bullet})^{-1}}\) :

Inverse of \({({\bullet})}\)

\({({\bullet})^{\rm sym}}\) :

Symmetric part of \({({\bullet})}\)

\({\cdot }\) :

Scalar product

\({\boldsymbol{:}}\) :

Double scalar product

\({\frac{{D}({\bullet})}{{D}t}\equiv \dot {{\bullet}}}\) :

Material time derivative of \({\left( {\bullet}\right)}\)

\({\nabla {\bullet}\equiv {\bf{grad}}({\bullet})}\) :

Gradient of \({{\bullet}}\)

\({\nabla \cdot {\bullet}\equiv {\bf{div}}({\bullet})}\) :

Divergence of \({{\bullet}}\)

\({\vec {{\bullet}}}\) :

Vector (tensorial notation)

\({\hat{{{\bullet}}}}\) :

Unit vector (tensorial notation)

\({[{\bullet}]}\) :

Matrix (Voigt notation)

\({\{{\bullet}\}}\) :

Vector (Voigt notation)

References

  1. Adhikari, S.: Damping models for structural vibration. PhD Dissertation, University of Cambridge (2000)

  2. Adhikari S., Woodhouse J.: Identification of damping: part 1, viscous damping. J. Sound Vib. 243(1), 43–61 (2001)

    Article  ADS  Google Scholar 

  3. Bathe K.J.: Finite Element Procedures. Prentice-Hall Inc., New Jersey (1996)

    MATH  Google Scholar 

  4. Bernal D.: Viscous damping in inelastic structural response. ASCE J. Struct. Eng. 120(4), 1240–1254 (1994)

    Article  MathSciNet  Google Scholar 

  5. Chaves E.W.V.: Notes on Continuum Mechanics. Series: Lecture Notes on Numerical Methods in Engineering and Sciences, vol. 4. Springer/CIMNE, Barcelona (2013)

    Book  Google Scholar 

  6. Chopra A.K.: Dynamics of Structures, 2nd edn. Prentice Hall, Englewood Cliffs (2007)

    Google Scholar 

  7. Chowdhury, I., Dasgupta, S.: Computation of Rayleigh damping coefficients for large systems. Electron. J. Geotech. Eng. 8, Bundle 8c (2003)

  8. Clough R.W., Penzien J.: Dynamic of Structures. McGraw-Hill Companies, New York (1975)

    MATH  Google Scholar 

  9. Clough, R.W., Wilson, E.L.: Dynamic analysis of large structural systems with localized nonlinearities. In: Computer Methods in Applied Mechanics and Engineering, vol. 17/18, pp. 107–129. North Holland Publ. Co. (1979)

  10. Inman D.J.: Engineering Vibration, 2nd edn. Prentice Hall, Englewood Cliffs (2001)

    Google Scholar 

  11. Oller S.: Nonlinear Dynamics of Structures. Series: Lecture Notes on Numerical Methods in Engineering and Sciences, vol. 6. Springer/CIMNE, Barcelona (2014)

    Google Scholar 

  12. Puthanpurayil, A.M., Dhakal, R.P., Carr, A.J.: Modeling of in-structural damping: a review of the state-of-the-art. In: Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society, 14–16 April, 2001. Auckland, New Zealand (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo W. V. Chaves.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaves, E.W.V. Dynamic analysis: a new point of view. Continuum Mech. Thermodyn. 28, 853–868 (2016). https://doi.org/10.1007/s00161-015-0419-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0419-4

Keywords

Navigation