Skip to main content
Log in

Modified firefly algorithm for multidimensional optimization in structural design problems

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

An enhanced nature-inspired metaheuristic optimization algorithm, called the modified firefly algorithm (MFA) is proposed for multidimensional structural design optimization. The MFA incorporates metaheuristic components, namely logistic and Gauss/mouse chaotic maps, adaptive inertia weight, and Lévy flight with a conventional firefly algorithm (FA) to improve its optimization capability. The proposed MFA has several advantages over its traditional FA counterpart. Logistic chaotic maps provide a diverse initial population. Gauss/mouse maps allow the tuning of the FA attractiveness parameter. The adaptive inertia weight controls the local exploitation and the global exploration of the search process. Lévy flight is used in the exploitation of the MFA. The proposed MFA was evaluated by comparing its performance in solving a series of benchmark functions with those of the FA and other well-known optimization algorithms. The efficacy of the MFA was then proven by its solutions to three multidimensional structural design optimization problems; MFA yielded the best solutions among the observed algorithms. Experimental results revealed that the proposed MFA is more efficient and effective than the compared algorithms. Therefore, the MFA serves as an alternative algorithm for solving multidimensional structural design optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adekanmbi O, Green P (2015) Conceptual comparison of population based metaheuristics for engineering problems. Sci World J 2015:9

    Article  Google Scholar 

  • Akhtar S, Tai K, Ray T (2002) A socio-behavioural simulation model for engineering design optimization. Eng Optim 34(4):341–354

    Article  Google Scholar 

  • Alberdi R, Murren P, Khandelwal K (2015) Connection topology optimization of steel moment frames using metaheuristic algorithms. Eng Struct 100:276–292

    Article  Google Scholar 

  • Baykasoglu A (2012) Design optimization with chaos embedded great deluge algorithm. Appl Soft Comput 12(3):1055–1067

    Article  Google Scholar 

  • Baykasoğlu A, Akpinar Ş (2015) Weighted superposition attraction (WSA): a swarm intelligence algorithm for optimization problems – part 2: constrained optimization. Appl Soft Comput 37:396–415

    Article  Google Scholar 

  • Baykasoğlu A, Ozsoydan FB (2015) Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl Soft Comput 36:152–164

    Article  Google Scholar 

  • Benfratello S, Palizzolo L, Tabbuso P (2015) Optimization of structures with unrestricted dynamic shakedown constraints. Struct Multidiscip Optim 52(3):431–445

    Article  MathSciNet  Google Scholar 

  • Bernardino HS, Barbosa IJC, Lemonge A (2007) A hybrid genetic algorithm for constrained optimization problems in mechanical engineering. IEEE Congress on Evolutionary Computation, IEEE, Piscataway, p 646–653

  • Cheng M-Y, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112

    Article  Google Scholar 

  • Chickermane H, Gea HC (1996) Structural optimization using a new local approximation method. Int J Numer Methods Eng 39(5):829–846

    Article  MathSciNet  MATH  Google Scholar 

  • Chou J-S, Ngo N-T (2016) Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns. Appl Energy 177:751–770

    Article  Google Scholar 

  • Chou J-S, Ngo N-T, Pham A-D (2016) Shear strength prediction in reinforced concrete deep beams using nature-inspired metaheuristic support vector regression. J Comput Civ Eng 30(1):04015002

    Article  Google Scholar 

  • Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219(15):8121–8144

    Article  MathSciNet  MATH  Google Scholar 

  • Coelho L d S, Mariani VC (2013) Improved firefly algorithm approach applied to chiller loading for energy conservation. Energ Buildings 59:273–278

    Article  Google Scholar 

  • Črepinšek M, Liu S-H, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv 45(3):1–33

    MATH  Google Scholar 

  • Dos Santos Coelho L, Coelho AAR (2009) Model-free adaptive control optimization using a chaotic particle swarm approach. Chaos, Solitons Fractals 41(4):2001–2009

    Article  MATH  Google Scholar 

  • Dugré A, Vadean A, Chaussée J (2016) Challenges of using topology optimization for the design of pressurized stiffened panels. Struct Multidiscip Optim 53(2):303–320

    Article  Google Scholar 

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, Piscataway, p 39–43

  • Fesanghary M, Mahdavi M, Minary-Jolandan M, Alizadeh Y (2008) Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Comput Methods Appl Mech Eng 197(33–40):3080–3091

    Article  MATH  Google Scholar 

  • Fister I, Fister I Jr, Yang X-S, Brest J (2013a) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46

    Article  Google Scholar 

  • Fister I, Yang X-S, Brest J, Fister I Jr (2013b) Modified firefly algorithm using quaternion representation. Expert Syst Appl 40(18):7220–7230

    Article  Google Scholar 

  • Fister I Jr, Perc M, Kamal SM, Fister I (2015) A review of chaos-based firefly algorithms: perspectives and research challenges. Appl Math Comput 252:155–165

    Article  MathSciNet  MATH  Google Scholar 

  • Fleury C, Braibant V (1986) Structural optimization: a new dual method using mixed variables. Int J Numer Methods Eng 23(3):409–428

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701

    Article  MATH  Google Scholar 

  • Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11(1):86–92

  • Gandomi AH, Yang X-S, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct 89(23–24):2325–2336

    Article  Google Scholar 

  • Gandomi A, Yang X-S, Alavi A (2013a) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

    Article  Google Scholar 

  • Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013b) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98

    Article  MathSciNet  MATH  Google Scholar 

  • Geisel T, Nierwetberg J, Zacherl A (1985) Accelerated diffusion in Josephson junctions and related chaotic systems. Phys Rev Lett 54(7):616–619

    Article  Google Scholar 

  • Gharooni-fard G, Moein-darbari F, Deldari H, Morvaridi A (2010) Scheduling of scientific workflows using a chaos-genetic algorithm. Procedia Comput Sci 1(1):1445–1454

    Article  Google Scholar 

  • Gold S, Krishnamurty S (1997) Trade-offs in robust engineering design. Proceeding of the ASME design engineering technical conferences, ASME, New York

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Longman Publishing Co., Inc., Boston

    MATH  Google Scholar 

  • Gomes H (2012) A firefly metaheuristic structural size and shape optimisation with natural frequency constraints. Int J Metaheuristics 2(1):38–85

    Article  Google Scholar 

  • Guirguis D, Hamza K, Aly M, Hegazi H, Saitou K (2015) Multi-objective topology optimization of multi-component continuum structures via a Kriging-interpolated level set approach. Struct Multidiscip Optim 51(3):733–748

    Article  MathSciNet  Google Scholar 

  • Haklı H, Uğuz H (2014) A novel particle swarm optimization algorithm with Levy flight. Appl Soft Comput 23:333–345

    Article  Google Scholar 

  • He S, Prempain E, Wu QH (2004) An improved particle swarm optimizer for mechanical design optimization problems. Eng Optim 36(5):585-605

  • Hedar A-R, Fukushima M (2006) Derivative-free filter simulated annealing method for constrained continuous global optimization. J Glob Optim 35(4):521–549

    Article  MathSciNet  MATH  Google Scholar 

  • Holden AV (1986) Chaos. Manchester University Press, Manchester

    Book  MATH  Google Scholar 

  • Hong W-C, Dong Y, Chen L-Y, Wei S-Y (2011) SVR with hybrid chaotic genetic algorithms for tourism demand forecasting. Appl Soft Comput 11(2):1881–1890

    Article  Google Scholar 

  • Iman RL, Davenport JM (1980) Approximations of the critical region of the fbietkan statistic. Commun Stat -Theory Methods 9(6):571–595

    Article  MATH  Google Scholar 

  • Jaberipour M, Khorram E (2010) Two improved harmony search algorithms for solving engineering optimization problems. Commun Nonlinear Sci Numer Simul 15(11):3316–3331

    Article  MATH  Google Scholar 

  • Jamil M, Yang X-S (2013) A literature survey of benchmark functions for global optimization problems. Int J Math Model Numer Optim 4(2):150–194

    MATH  Google Scholar 

  • Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132

    Article  MathSciNet  MATH  Google Scholar 

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  • Kazem A, Sharifi E, Hussain FK, Saberi M, Hussain OK (2013) Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Appl Soft Comput 13(2):947–958

    Article  Google Scholar 

  • Kripka M, Medeiros GF, Lemonge ACC (2015) Use of optimization for automatic grouping of beam cross-section dimensions in reinforced concrete building structures. Eng Struct 99:311–318

    Article  Google Scholar 

  • Lamberti L, Pappalettere C (2011) Metaheuristic design optimization of skeletal structures: a review. Comput Technol Rev 4:1–32

    Article  Google Scholar 

  • Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(36–38):3902–3933

    Article  MATH  Google Scholar 

  • Lemonge ACC, Barbosa HJC (2004) An adaptive penalty scheme for genetic algorithms in structural optimization. Int J Numer Methods Eng 59(5):703–736

    Article  MATH  Google Scholar 

  • Liu B, Wang L, Jin Y-H, Tang F, Huang D-X (2005) Improved particle swarm optimization combined with chaos. Chaos, Solitons Fractals 25(5):1261–1271

    Article  MATH  Google Scholar 

  • Luo Q, Tong L (2015) Structural topology optimization for maximum linear buckling loads by using a moving iso-surface threshold method. Struct Multidiscip Optim 52(1):71–90

    Article  MathSciNet  Google Scholar 

  • Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579

    Article  MathSciNet  MATH  Google Scholar 

  • May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261(5560):459–467

    Article  Google Scholar 

  • Meng X-B, Gao XZ, Liu Y, Zhang H (2015) A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization. Expert Syst Appl 42(17–18):6350–6364

    Article  Google Scholar 

  • Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization algorithm with adaptive inertia weight. Appl Soft Comput 11(4):3658–3670

    Article  Google Scholar 

  • Pal SK, Rai CS, Singh AP (2012) Comparative study of firefly algorithm and particle swarm optimization for noisy Non-linear optimization problems. Int J Intell Syst Appl 4(10):50–57

    Google Scholar 

  • Pavlyukevich I (2007) Lévy flights, non-local search and simulated annealing. J Comput Phys 226(2):1830–1844

    Article  MathSciNet  MATH  Google Scholar 

  • Peri D, Tinti F (2012) A multistart gradient-based algorithm with surrogate model for global optimization. Commun Appl Ind Math 3(1):1-22

  • Rao SS (1996) Engineering optimization: theory and practice. John Wiley & Sons, Chichester

    Google Scholar 

  • Rojas-Labanda S, Stolpe M (2015) Benchmarking optimization solvers for structural topology optimization. Struct Multidiscip Optim 52(3):527–547

    Article  MathSciNet  Google Scholar 

  • Roque CMC, Martins PALS (2015) Differential evolution for optimization of functionally graded beams. Compos Struct 133:1191–1197

    Article  Google Scholar 

  • Saka MP, Dogan E (2012) Recent developments in metaheuristic algorithms: a review. Comput Technol Rev 5:31–78

    Article  Google Scholar 

  • Saka MP, Geem ZW (2013) Mathematical and metaheuristic applications in design optimization of steel frame structures: an extensive review. Math Probl Eng 2013:33

    Article  MATH  Google Scholar 

  • Saka MP, Dogan E, Aydogdu I (2013) Review and analysis of swarm-intelligence based algorithms. Swarm intelligence and bio-inspired computation. Elsevier, London, pp 25–47

    Google Scholar 

  • Sergeyev YD, Kvasov DE (2015) A deterministic global optimization using smooth diagonal auxiliary functions. Commun Nonlinear Sci Numer Simul 21(1–3):99–111

    Article  MathSciNet  MATH  Google Scholar 

  • Shi Y, Eberhart R (1998) A modified particle swarm optimizer. The IEEE International Conference on Evolutionary Computation, Piscataway, p 69–73

  • Solomon TH, Weeks ER, Swinney HL (1994) Chaotic advection in a two-dimensional flow: Lévy flights and anomalous diffusion. Physica D: Nonlinear Phenom 76(1–3):70–84

    Article  MATH  Google Scholar 

  • Storn R, Price K (1997) Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Tilahun SL, Ong HC (2012) Modified firefly algorithm. J Appl Math 2012:12

    Article  MathSciNet  MATH  Google Scholar 

  • Triguero FH (2016) Statistical inference in computational intelligence and data mining. http://sci2s.ugr.es/sicidm

  • Wang GG (2003) Adaptive response surface method using inherited latin hypercube design points. J Mech Des 125(2):210–220

    Article  Google Scholar 

  • Wang Y, Cai Z, Zhang Q (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15(1):55–66

    Article  Google Scholar 

  • Wang Y, Li H-X, Huang T, Li L (2014) Differential evolution based on covariance matrix learning and bimodal distribution parameter setting. Appl Soft Comput 18:232–247

    Article  Google Scholar 

  • Weeks E, Solomon TH, Urbach J, Swinney H (1995) Observation of anomalous diffusion and Lévy flights. In: Shlesinger M, Zaslavsky G, Frisch U (eds) Lévy flights and related topics in physics. Springer Berlin Heidelberg, p 51–71

  • Yang X-S (2008) Firefly algorithm. Luniver Press, Bristol

    Google Scholar 

  • Yang X-S (2010a) Firefly algorithm, Lévy flights and global optimization. In: Bramer M, Ellis R, Petridis M (eds) Research and development in intelligent systems XXVI. Springer, London, pp 209–218

    Chapter  Google Scholar 

  • Yang X-S (2010b) A new metaheuristic bat-inspired algorithm. In: González J, Pelta D, Cruz C, Terrazas G, Krasnogor N (eds) Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74

    Chapter  Google Scholar 

  • Yang X-S (2014a) Analysis of algorithms. Nature-inspired optimization algorithms. Elsevier, Oxford, pp 23–44

    Book  Google Scholar 

  • Yang X-S (2014b) Chapter 8 - firefly algorithms. In: Yang X-S (ed) Nature-inspired optimization algorithms. Elsevier, Oxford, pp 111–127

    Chapter  Google Scholar 

  • Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. World Congress on Nature & Biologically Inspired Computing, NaBIC 2009. p 210–214

  • Yang D, Liu Z, Zhou J (2014) Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization. Commun Nonlinear Sci Numer Simul 19(4):1229–1246

    Article  MathSciNet  Google Scholar 

  • Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inf Sci 178(15):3043–3074

    Article  Google Scholar 

  • Zhang J, Liang C, Huang Y, Wu J, Yang S (2009) An effective multiagent evolutionary algorithm integrating a novel roulette inversion operator for engineering optimization. Appl Math Comput 211(2):392–416

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou G, Ma Z-D, Cheng A, Li G, Huang J (2015) Design optimization of a runflat structure based on multi-objective genetic algorithm. Struct Multidiscip Optim 51(6):1363–1371

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jui-Sheng Chou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, JS., Ngo, NT. Modified firefly algorithm for multidimensional optimization in structural design problems. Struct Multidisc Optim 55, 2013–2028 (2017). https://doi.org/10.1007/s00158-016-1624-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1624-x

Keywords

Navigation