Skip to main content
Log in

On the influence of model reduction techniques in topology optimization of flexible multibody systems using the floating frame of reference approach

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Employing the floating frame of reference formulation in the topology optimization of dynamically loaded components of flexible multibody systems seems to be a natural choice. In this formulation the deformation of flexible bodies is approximated by global shape functions, which are commonly obtained from finite element models using model reduction techniques. For topology optimization these finite element models can be parameterized using the solid isotropic material with penalization (SIMP) approach. However, little is known about the interplay of model reduction and SIMP parameterization. Also securing the model reduction quality despite major changes of the design during the optimization has not been addressed yet. Thus, using the examples of a flexible frame and a slider-crank mechanism this work discusses the proper choice of the model reduction technique in the topology optimization of flexible multibody systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Albers A, Ottnad J, Weiler H, Häußler P (2007) Methods for lightweight design of mechanical components in humanoid robots. In: IEEE-RAS international conference on humanoid robots, Pittsburg, Pennsylvania, USA

  • Antoulas A (2005) Approximation of large-scale dynamical systems. SIAM, Philadelphia

  • Antoulas A, Beattie C, Gugercin S (2010) Interpolatory model reduction of large-scale dynamical systems. In: Mohammadpour J, Grigoriadis K (eds) Efficient modeling and control of large-scale systems. Springer, Berlin, pp 3–59

  • Antoulas AC, Sorensen DC (2001) Approximation of large-scale dynamical systems: An overview. Int J Appl Math Comput Sci 11(5):1093–1121

    MathSciNet  MATH  Google Scholar 

  • Bathe KJ (1996) Finite element procedures. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Bendsøe M (1989) Optimal shape design as a material distribution Problem. Struct Multidiscip Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe M, Sigmund O (2003) Topology optimization - theory methods and applications. Springer, Berlin

    Google Scholar 

  • Brüls O, Lemaire E , Duysinx P, Eberhard P (2011) Optimization of multibody systems and their structural components. In: Multibody dynamics, Springer Netherlands, pp 49–68

  • Burkhardt M, Seifried R, Eberhard P (2014) Aspects of symbolic formulations in flexible multibody systems. J Comput Nonlinear Dyn. 9(4)

  • Craig R, Bampton M (1968) Coupling of substructures for dynamic analyses. AIAA J 6(7):1313–1319

    Article  MATH  Google Scholar 

  • Craig R, Kurdila A (2006) Fundamentals of Structural Dynamics. John Wiley & Sons, New York

    MATH  Google Scholar 

  • Dietz S (1999) Vibration and fatigue analysis of vehicle systems using component modes. VDI Fortschritt-Berichte, Reihe 12, Nr. VDI-Verlag, Düsseldorf

    Google Scholar 

  • Ewins D (1995) Modal Testing: Theory and Practice. Taunton Research Studies

  • Fehr J (2011) Automated and error-controlled model reduction in elastic multibody systems, dissertation schriften aus dem institut für technische und numerische mechanik der universität stuttgart, vol 21. Shaker Verlag, Aachen

  • Grimme E (1997) Krylov projection method for model reduction. University of Illinois at Urbana-Champaign, Phd thesis

    Google Scholar 

  • Häußler P, Emmrich D, Müller O, Ilzhöfer B, Nowicki L, Albers A (2001) Automated topology optimization of flexible components in hybrid finite element multibody systems using ADAMS/Flex and MSC. construct. In: ADAMS European User’s Conference, Berchtesgaden, Germany, 14th-15th November

  • Häußler P, Minx J, Emmrich D (2004) Topology optimization of dynamically loaded parts in mechanical systems: coupling of MBS, FEM and structural optimization. Wiesbaden, Germany

    Google Scholar 

  • Held A, Seifried R (2013) Gradient-based optimization of flexible multibody systems using the absolute nodal coordinate formulation. In: Proceedings of the ECCOMAS thematic conference multibody dynamics 2013, Zagreb, Croatia, 1-4 July

  • Hurty WC (1965) Dynamic analysis of structural systems using component modes. AIAA J 3:678–685

    Article  Google Scholar 

  • Kang B, Park G (2005) Optimization of flexible multibody dynamic systems using the equivalent static load method. AIAA J 43(4):846–852

    Article  Google Scholar 

  • Kurz T, Burkhardt M, Eberhard P (2011) Systems with constraint equations in the symbolic multibody simulation software neweul-M 2. In: Samin JC, Fisette P (eds) Proceedings of the ECCOMAS thematic conference on multibody dynamics. Brussels, Belgium, p 2011

  • Kurz T, Eberhard P, Henninger C, Schiehlen W (2010) From Neweul to Neweul-M 2: symbolical equations of motion for multibody system analysis and synthesis. Multibody Sys Dyn 24(1):25–41

    Article  MATH  Google Scholar 

  • Moghadasi A (2013) Modeling and analyzing the influence of bearing loads in the topology Optimization of flexible multibody systems. Institute of Engineering and Computational Mechanics, University of Stuttgart

    Google Scholar 

  • Nowakowski C, Fehr J, Fischer M, Eberhard P (2012) Model-Order reduction in elastic multibody systems using the floating Frame of reference formulation. In: Proceedings MATHMOD 2012 - 7th Vienna International Conference on Mathematical Modelling, Vienna Austria

  • Olhoff N, Du J (2005) Topological design of continuum structures subjected to forced vibration. In: 6th World congresses of structural and multidisciplinary optimization

  • Pedersen N (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20:2–11

    Article  Google Scholar 

  • Saad J (2003) Iterative methods for sparse linear systems. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Schwertassek R, Wallrapp O, Shabana AA (1999) Flexible multibody simulation and choice of shape functions. Nonlinear Dynamics 20(4):361–380

    Article  MathSciNet  MATH  Google Scholar 

  • Schwertassek R, Wallrapp O (1999). Dynamik flexibler Mehrkörpersysteme (in German) Vieweg, Braunschweig

  • Seifried R (2013) Dynamics of underactuated multibody systems - modeling. Springer, Berlin

  • Seifried R, Held A (2012) Optimal design of lightweight machines using flexible multibody system dynamics. In: Proceedings of the ASME 2012 international design engineering technical conferences (IDETC/CI 2012). Chicago, IL, USA

  • Shabana AA (1997) Flexible multibody dynamics: review of past and recent developements. Multibody Sys Dyn 1:189–222

    Article  MathSciNet  MATH  Google Scholar 

  • Shabana AA (2005) Dynamics of multibody systems. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33:401–424

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes - A new method for structural optimization. Int J Numer Methods Eng 24:359– 373

    Article  MathSciNet  MATH  Google Scholar 

  • Tromme E, Brüls O, Emonds-Alt J, Bruyneel M, Virlez G, Duysinx P (2013) Discussion on the optimization problem formulation of flexible components in multibody systems. Struct Multidiscip Optim 48 (6):1189–1206

    Article  MathSciNet  Google Scholar 

  • Volkwein S (2006) Model reduction using proper orthogonal decomposition. http://www.uni-graz.at/imawww/volkwein/POD.pdf. In: Accessed 30 March 2012

  • Wallrapp O (1993) Standard Input Data of Flexible Bodies for Multibody System Codes. Report IB 515-93-04, DLR. Institute for Robotics and System Dynamics, Oberpfaffenhofen

    Google Scholar 

  • Wehage RA, Haug EJ (1981) Generalized coordinate partitioning in dynamic analysis of mechanical systems. Tech rep. College of Engineering, University of Iowa

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/2) at the University of Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Held.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Held, A., Nowakowski, C., Moghadasi, A. et al. On the influence of model reduction techniques in topology optimization of flexible multibody systems using the floating frame of reference approach. Struct Multidisc Optim 53, 67–80 (2016). https://doi.org/10.1007/s00158-015-1302-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1302-4

Keywords

Navigation