Skip to main content

Advertisement

Log in

Optimization of gridshell bar orientation using a simplified genetic approach

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Gridshells are defined as structures that have the shape and rigidity of a double curvature shell but consist of a grid instead of a continuous surface. This study concerns those obtained by elastic deformation of an initially flat two-way grid. This paper presents a novel approach to generate gridshells on an imposed shape under imposed boundary conditions. A numerical tool based on a geometrical method, the compass method, is developed. It is coupled with genetic algorithms to optimize the orientation of gridshell bars in order to minimize the stresses and therefore to avoid bar breakage during the construction phase. Examples of application are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Adriaenssens S, Barnes M (2001) Tensegrity spline beam and grid shell structures. J Eng Struct 23(1):29–36

    Article  Google Scholar 

  • Barnes M (1994) Form and stress engineering of tension structures. Struct Eng Rev 6(3–4):175–202

    Google Scholar 

  • Barnes M (1999) Form finding and analysis of tension structures by dynamic relaxation. Int J Space Struct 14(2):89–104

    Article  Google Scholar 

  • Baverel O, Caron JF, Tayeb F, Du Peloux L (2012) Gridshells in composite materials: construction of a 300 m 2 forum for the solidays’ festival in paris. Struct Eng Int 22(3):408–414

    Article  Google Scholar 

  • Baverel O, Nooshin H, Kuroiwa Y (2004) Configuration processing of nexorades using genetic algorithms. J Int Assoc Shell Spat Struct 45(145):99–108

    Google Scholar 

  • Boisse P, Hamila N, Vidal-Sallé E, Dumont F (2011) Simulation of wrinkling during textile composite reinforcement forming. influence of tensile, in-plane shear and bending stiffnesses. Compos Sci Technol 71:683–692

    Article  Google Scholar 

  • Bouhaya L (2010) Structural optimization of gridshells. PhD thesis, Université Paris-Est

  • Bouhaya L, Baverel O, Caron JF (2009) Mapping two-way continuous elastic grid on an imposed surface: application to grid shells. In: Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium. Valencia

  • Day A (1965) An introduction to dynamic relaxation. Engineer 29:218–221

    Google Scholar 

  • Douthe C, Baverel O (2009) Design of nexorades or reciprocal frame systems with the dynamic relaxation method. Comput Struct 87:1296–1307

    Article  Google Scholar 

  • Douthe C, Baverel O, Caron JF (2006) Form-finding of a grid shell in composite materials. J Int Assoc Shell Spat Struct 47(150):53–62

    Google Scholar 

  • Douthe C, Caron J, Baverel O (2010) Gridshell structures in glass fibre reinforced polymers. Constr Build Mater 24:1580–1589

    Article  Google Scholar 

  • Du Peloux L, Tayeb F, Baverel O (2013) From shape to shell. In: Design modelling symposium. Berlin

  • Hamila N, Boisse P, Sabourin F, Brunet M (2009) A semi-discrete shell finite element for textile composite reinforcement forming simulation. Int J Numer Methods Eng 79:1443–1466

    Article  MATH  Google Scholar 

  • Happold E, Liddell W (1975) Timber lattice roof for the mannheim bundesgartenschau. Struct Eng 53:99–135

    Google Scholar 

  • Harris R, Haskins S, Royon J (2008) The savill garden gridshell: design and construction. Struct Eng 86:27–34

    Google Scholar 

  • Harris R, Romer J, Kelly O, Johnson S (2003) Design and construction of the downland gridshell. Build Res Inf 31(6):427–454

    Article  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press

  • Hooke R (1675) A description of helioscopes, and some other instruments. London

  • Kuroiwa Y (2000) Regularisation of structural forms using genetic algorithms. PhD thesis, University of Surrey

  • Otto F, Hennicke J, Matsushita K (1974) IL10 Gitterschalen. Institut Fr Leichte Flchentragwerke (IL)

  • Popov EV (2002) Geometric approach to chebyshev net generation along an arbitrary surface represented by nurbs. In: International conference on computer graphics and vision graphiCon ’2002

  • Syswerda G (1989) Uniform crossover in genetic algorithms. In: Proceedings of the 3rd international conference on genetic algorithms, pp 2–9

  • Tchebychev P (1878) Sur la coupe des vêtements. In: Association Française pour l’Avancement des Sciences, Congrès de Paris, pp 154–155

  • Van Der Ween F (1991) Algorithms for draping fabrics on doubly-curved surfaces. Int J Numer Meth Eng 31:1415–1426

    Article  Google Scholar 

  • Vincenti A, Ahmadian M, Vannucci P (2010) Bianca: a genetic algorithm to solve hard combinatorial optimization problems in engineering. J Glob Optim 48(3):399–421

    Article  MathSciNet  MATH  Google Scholar 

  • Winslow P, Pellegrino S, Sharma S (2007) Mapping twoway grids onto free-form surfaces. In: Proceedings of the international association of shell and spatial structures symposium. Venice

  • Winslow P, Pellegrino S, Sharma S (2010) Multi-objective optimization of free-form grid structures. Struct Multidiscip Optim 4(1–6):257–269

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Bouhaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouhaya, L., Baverel, O. & Caron, JF. Optimization of gridshell bar orientation using a simplified genetic approach. Struct Multidisc Optim 50, 839–848 (2014). https://doi.org/10.1007/s00158-014-1088-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1088-9

Keywords

Navigation