Skip to main content
Log in

Optimization of a proton exchange membrane fuel cell membrane electrode assembly

  • Industrial Application
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A computational framework for fuel cell analysis and optimization is presented as an innovative alternative to the time consuming trial-and-error process currently used for fuel cell design. The framework is based on a two-dimensional through-the-channel isothermal, isobaric and single phase membrane electrode assembly (MEA) model. The model input parameters are the manufacturing parameters used to build the MEA: platinum loading, platinum to carbon ratio, electrolyte content and gas diffusion layer porosity. The governing equations of the fuel cell model are solved using Netwon’s algorithm and an adaptive finite element method in order to achieve near quadratic convergence and a mesh independent solution respectively. The analysis module is used to solve the optimization problem of finding the optimal MEA composition for maximizing performance. To solve the optimization problem a gradient-based optimization algorithm is used in conjunction with analytical sensitivities. By using a gradient-based method and analytical sensitivities, the framework presented is capable of solving a complete MEA optimization problem with state-of-the-art electrode models in approximately 30 min, making it a viable alternative for solving large-scale fuel cell problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antolini E, Giorgi L, Pozio A, Passalacqua E (1999) Influence of nafion loading in the catalyst layer of gas-diffusion electrodes for pemfc. J Power Sources 77:136–142

    Article  Google Scholar 

  • Bangerth W, Hartmann R, Kanschat G (2008) deal.II Differential equations analysis library, technical reference. http://www.dealii.org

  • Bender G, Wilson MS, Zawodzinski TA (2003) Further refinements in the segmented cell approach to diagnosing performance in polymer electrolyte fuel cells. J Power Sources 123(2):163–171

    Article  Google Scholar 

  • Bernardi D, Verbrugge M (1991) Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte. AIChE J 37(8):1151–1163

    Article  Google Scholar 

  • Bernardi DM, Verbrugge MW (1992) Mathematical model of the solid-polymer-electrolyte fuel cell. J Electrochem Soc 139(9):2477–2491

    Article  Google Scholar 

  • Berning T, Djilali N (2003) Three-dimensional computational analysis of transport phenomena in a pem fuel cell—a parametric study. J Power Sources 124(2):440–452

    Article  Google Scholar 

  • Berning T, Lu D, Djilali N (2002) Three-dimensional computational analysis of transport phenomena in a pem fuel cell. J Power Sources 106(1–2):284–294

    Article  Google Scholar 

  • Brett DJL, Atkins S, Brandon NP, Vesovic V, Vasileiadis N, Kucernak AR (2001) Measurement of the current distribution along a single flow channel of a solid polymer fuel cell. Electrochem Commun 3(11):628–632

    Article  Google Scholar 

  • Cacuci D (2003) Sensitivity and uncertainty analysis: theory, vol 1. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Carnes B, Djilali N (2005) Systematic parameter estimation for PEM fuel cell models. J Power Sources 144(1):83–93

    Article  Google Scholar 

  • Chen S, Kucernak A (2004) Electrocatalysis under conditions of high mass transport rate: oxygen reduction on single submicrometer-sized pt particles supported on carbon. J Phys Chem B 108(10):3262–3276

    Article  Google Scholar 

  • Cheng CH, Lin HH, Lai GJ (2007) Design for geometric parameters of pem fuel cell by integrating computational fluid dynamics code with optimization method. J Power Sources 165(2):803–813

    Article  Google Scholar 

  • COMSOL (2005) COMSOL 3.2 Multiphysics user’s guide

  • Cussler EL (1997) Diffusion: mass transfer in fluid systems, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Davis TA (2004a) Algorithm 832: Umfpack, an unsymmetric-pattern multifrontal method. ACM Trans Math Softw 30(2):196–199

    Article  MATH  Google Scholar 

  • Davis TA (2004b) A column pre-ordering strategy for the unsymmetric-pattern multifrontal method. ACM Trans Math Softw 30(2):165–195

    Article  MATH  Google Scholar 

  • E-TEK (2006) E-tek product catalogue. http://www.etek-inc.com. Accessed November 2006

  • Eikerling M (2006) Water management in cathode catalyst layers of pem fuel cells. J Electrochem Soc 153(3):E58–E70

    Article  Google Scholar 

  • Eikerling M, Kornyshev A (1998) Modelling the performance of the cathode catalyst layer of polymer electrolyte fuel cells. J Electroanal Chem 453(1–2):89–106

    Article  Google Scholar 

  • Eldred M, Giunta A, van Bloemen Waanders B, Wojtkiewicz SFJ, Hart W, Alleva M (2003) Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 3.0 users manual. Tech. Rep. 2001–3796, Sandia National Laboratory

  • Gode P, Jaouen F, Lindbergh G, Lundblad A, Sundholm G (2003) Influence of the compositon on the structure and electrochemical characteristics of the pemfc cathode. Electrochim Acta 48:4175–4187

    Article  Google Scholar 

  • Grujicic M, Chittajallu K (2004a) Design and optimization of polymer electrolyte membrane (PEM) fuel cells. Appl Surf Sci 227:56–72

    Article  Google Scholar 

  • Grujicic M, Chittajallu K (2004b) Optimization of the cathode geometry in the polymer electrolyte membrane (PEM) fuel cells. Chem Eng Sci 59:5883–5895

    Article  Google Scholar 

  • Grujicic M, Zhao C, Chittajallu K, Ochterbeck J (2004) Cathode and interdigitated air distributor geometry optimization in polymer electrolyte membrane (PEM) fuel cells. Mater Sci Eng B 108:241–252

    Article  Google Scholar 

  • Gurau V, Liu H, Kakaç S (1998) Two-dimensional model for proton exchange membrane fuel cells. AIChE J 44(11):2410–2422

    Article  Google Scholar 

  • Hakenjos A, Tüber K, Schumacher J, Hebling C (2004) Characterizing PEM fuel cell performance using a current distribution measurement in comparison with a CFD model. Fuel Cells 4(3):185–189

    Article  Google Scholar 

  • Hinatsu JT, Mizuhata M, Takenaka H (1994) Water uptake of perfluorosulfonic acid membranes for liquid water and water vapour. J Electrochem Soc 141(6):1493–1498

    Article  Google Scholar 

  • Hottinen T, Noponen M, Mennola T, Himanen O, Mikkola M, Lund P (2003) Effect of ambient conditions on performance and current distribution of a polymer electrolyte membrane fuel cell. J Appl Electrochem 33:265–271

    Article  Google Scholar 

  • Karan K (2007) Assessment of transrpot-limited catalyst utilization for engineering of ultra-low pt loading polymer electrolyte fuel cell anodes. Electrochem Commun 9(4):747–753

    Article  Google Scholar 

  • Kulikovsky A, Divisek J, Kornyshev A (1999) Modeling the cathode compartment of polymer electrolyte fuel cells: dead and active reaction zones. J Electrochem Soc 146(11):3981–3991

    Article  Google Scholar 

  • Lee S, Mukerjee S, McBreen J, Rho Y, Kho Y, Lee TH (1998) Effects of nafion impregnation on performances of pemfc electrodes. Electrochim Acta 43(24):3693–3701

    Article  Google Scholar 

  • Li G, Pickup PG (2003) Ionic conductivity of PEMFC electrodes. J Electrochem Soc 150(11):C745–C752

    Article  Google Scholar 

  • Litster S, McLean G (2004) PEM fuel cell electrodes. J Power Sources 130(1–2):61–76

    Article  Google Scholar 

  • Luenberger DG (1969) Optimization by vector space methods. Wiley, New York

    MATH  Google Scholar 

  • Martins J (2002) A coupled-adjoint method for high-fidelity aero-structural optimization. Ph.D. thesis, Standford University

  • Martins J, Kroo I, Alonso J (2000) An automated method for sensitivity analysis using complex variables. In: 38th aerospace sciences meeting and exhibit, Reno, 10–13 January 2000

  • Mawardi A, Yang F, Pitchumani R (2005) Optimization of the operating parameters of a proton exchange membrane fuel cell for maximum power density. J Cell Sci Technol 2(2):121–135

    Article  Google Scholar 

  • Natarajan D, Nguyen TV (2004) Effect of electrode configuration and electronic conductivity on current density distribution measurements in pem fuel cells. J Power Sources 135(1):95–109

    Article  Google Scholar 

  • Natarajan D, Nguyen TV (2005a) Current distribution in pem fuel cells. Part 1: oxygen and fuel flow rate effects. AIChE J 51(9):2587–2598

    Article  Google Scholar 

  • Natarajan D, Nguyen TV (2005b) Current distribution in pem fuel cells. Part 2: air operation and temperature effect. AIChE J 51(9):2599–2608

    Article  Google Scholar 

  • Neyerlin KC, Gu W, Jorne J, Gasteiger HA (2006) Determination of catalyst unique parameters for the oxygen reduction reaction in a PEMFC. J Electrochem Soc 154(10):A1955–A1963

    Article  Google Scholar 

  • Parthasarathy A, Srinivasan S, Appleby AJ, Parthasarathy CRMA, Srinivasan S, Appleby AJ, Martin CR (1992a) Pressure dependence of the oxygen reduction reaction at the platinum microelectrode/nafion interface: electrode kinetics and mass transport. J Electrochem Soc 139(9):2530–2537

    Article  Google Scholar 

  • Parthasarathy A, Srinivasan S, Appleby AJ, Parthasarathy CRMA, Srinivasan S, Appleby AJ, Martin CR (1992b) Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/nafion interface—a microelectrode investigation. J Electrochem Soc 139(10):2856–2862

    Article  Google Scholar 

  • Passalacqua E, Lufrano F, Squadrito G, Patti A, Giorgi L (2001) Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. Electrochim Acta 46:799–805

    Article  Google Scholar 

  • Sasikumar G, Ihm J, Ryu H (2004) Optimum Nafion content in PEM fuel cell electrodes. Electrochim Acta 50(2–3):601–605

    Article  Google Scholar 

  • Secanell M (2007) Computational modeling and optimization of proton exchange membrane fuel cells. Ph.D. thesis, University of Victoria

  • Secanell M, Carnes B, Suleman A, Djilali N (2007a) Numerical optimization of proton exchange membrane fuel cell cathodes. Electrochim Acta 52(7):2668–2682

    Article  Google Scholar 

  • Secanell M, Karan K, Suleman A, Djilali N (2007b) Multi-variable optimization of PEMFC cathodes using an agglomerate model. Electrochim Acta 52(22):6318–6337

    Article  Google Scholar 

  • Secanell M, Karan K, Suleman A, Djilali N (2008a) Optimal design of ultra-low platinum pemfc anode electrodes. J Electrochem Soc 155(2):B125–B134

    Article  Google Scholar 

  • Secanell M, Songprakorp R, Suleman A, Djilali N (2008b) Multi-objective optimization of a polymer electrolyte fuel cell membrane electrode assembly. Energy Environ Sci 1(2):378–388

    Article  Google Scholar 

  • Siegel N, Ellis M, Nelson D, Von Spakovsky M (2003) Single domain PEMFC model based on agglomerate catalyst geometry. J Power Sources 115(1):81–89

    Article  Google Scholar 

  • Sivertsen B, Djilali N (2005) Cfd based modelling of proton exchange membrane fuel cells. J Power Sources 141(1):65–78

    Article  Google Scholar 

  • Song D, Wang Q, Liu Z, Navessin T, Holdcroft S (2004a) Numerical study of pem fuel cell cathode with non-uniform catalyst layer. Electrochim Acta 50:731–737

    Article  Google Scholar 

  • Song D, Wang Q, Liu Z, Navessin T, Eikerling M, Holdcroft S (2004b) Numerical optimization study of the catalyst layer of pem fuel cell cathode. J Power Sources 126(1–2):104–111

    Article  Google Scholar 

  • Song D, Wang Q, Liu Z, Eikerling M, Xie Z, Navessin T, Holdcroft S (2005) A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells. Electrochim Acta 50(16–17):3359–3374

    Google Scholar 

  • Songprakorp R (2008) Investigation of dynamic behaviors of proton exchange fuel cells. Ph.D. thesis, University of Victoria

  • Springer T, Zawodzinski T, Gottesfeld S (1991) Polymer electrolyte fuel cell model. J Electrochem Soc 138(8):2334–2342

    Article  Google Scholar 

  • Stumper J, Campbell SA, Wilkinson DP, Johnson MC, Davis M (1998) In-situ methods for the determination of current distributions in pem fuel cells. Electrochim Acta 43(24):3773–3783

    Article  Google Scholar 

  • Sun W, Peppley BA, Karan K (2005) An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters. Electrochim Acta 50(16–17):3347–3358

    Google Scholar 

  • Wang L, Liu H (2004) Performance studies of pem fuel cells with interdigitated flow fields. J Power Sources 134(2):185–196

    Article  Google Scholar 

  • Wang JX, Springer TE, Adzic RR (2006) Dual-pathway kinetic equation for the hydrogen oxidation reaction on pt electrodes. J Electrochem Soc 153(9):A1732–A1740

    Article  Google Scholar 

  • Wang Q, Eikerling M, Song D, Liu Z (2004a) Structure and performance of different types of agglomerates in cathode catalyst layers in PEM fuel cells. J Electroanal Chem 573:61–69

    Article  Google Scholar 

  • Wang Q, Eikerling M, Song D, Liu Z, Navessin T, Xie Z, Holdcroft S (2004b) Functionally graded cathode catalyst layers for polymer electrolyte fuel cells. I. Theoretical modeling. J Electrochem Soc 151(7):A950–A957

    Article  Google Scholar 

  • Wang L, Husar A, Zhou T, Liu H (2003) A parametric study of pem fuel cell performances. Int J Hydrogen Energy 28(11):1263–1272

    Article  Google Scholar 

  • Xie J, More KL, Zawodzinski TA, Smith WH (2004) Porosimetry of meas made by “thin film decal” method and its effects on performance of PEFCs. J Electrochem Soc 151(11):A1841–A1846

    Article  Google Scholar 

  • Xie Z, Navessin T, Shi K, Chow R, Wang Q, Song D, Andreaus B, Eikerling M, Liu Z, Holdcroft S (2005) Functionally graded cathode catalyst layers for polymer electrolyte fuel cells. II. Experimental study of the effects of nafion distribution. J Electrochem Soc 152(6):A1171–A1179

    Article  Google Scholar 

  • Yosida K (1965) Functional analysis. Springer, Berlin

    MATH  Google Scholar 

  • You L, Liu H (2001) A parametric study of the cathode catalyst layer of PEM fuel cells using a pseudo-homogeneous model. Int J Hydrogen Energy 26(9):991–999

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afzal Suleman.

Additional information

This article was presented at the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, BC, Canada, Sept 10–12, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Secanell, M., Songprakorp, R., Djilali, N. et al. Optimization of a proton exchange membrane fuel cell membrane electrode assembly. Struct Multidisc Optim 40, 563–583 (2010). https://doi.org/10.1007/s00158-009-0387-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-009-0387-z

Keywords

Navigation