Skip to main content
Log in

Amalgamation through quantifier elimination for varieties of commutative residuated lattices

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

This work presents a model-theoretic approach to the study of the amalgamation property for varieties of semilinear commutative residuated lattices. It is well-known that if a first-order theory T enjoys quantifier elimination in some language L, the class of models of the set of its universal consequences \({\rm T_\forall}\) has the amalgamation property. Let \({{\rm Th}(\mathbb{K})}\) be the theory of an elementary subclass \({\mathbb{K}}\) of the linearly ordered members of a variety \({\mathbb{V}}\) of semilinear commutative residuated lattices. We show that whenever \({{\rm Th}(\mathbb{K})}\) has elimination of quantifiers, and every linearly ordered structure in \({\mathbb{V}}\) is a model of \({{\rm Th}_\forall(\mathbb{K})}\), then \({\mathbb{V}}\) has the amalgamation property. We exploit this fact to provide a purely model-theoretic proof of amalgamation for particular varieties of semilinear commutative residuated lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baaz, M., Veith, H.: Quantifier elimination in fuzzy logic. In: Computer Science Logic, Volume 1584 of Lecture Notes in Computer Science, pp. 399–414. Springer, Berlin (1999)

  2. Blok W.J., Ferreirim I.: On the structure of hoops. Algebra Universalis 43(2–3), 233–257 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blok, W.J., Pigozzi, D.: Algebraizable Logics, Vol. 396 of Memoirs of the American Mathematical Society, A.M.S., Providence (1989)

  4. Busaniche M., Mundici D.: Geometry of Robinson consistency in Łukasiewicz logic. Ann. Pure Appl. Log. 147(1–2), 1–22 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caicedo, X.: Implicit operations in MV-algebras and the connectives of Łukasiewicz logic. In: Aguzzoli, S., Ciabattoni, A., Gerla, B., Manara, C., Marra, V. (eds.) Algebraic and Proof-Theoretic Aspects of Non-classical Logics. Lecture Notes in Computer Science 4460, pp. 50–68. Springer (2007)

  6. Chang C.C.: Algebraic analysis of many-valued logics. Trans. Am. Math. Soc. 88, 467–490 (1958)

    Article  MATH  Google Scholar 

  7. Chang C.C.: A new proof of the completeness of Łukasiewicz axioms. Trans. Am. Math. Soc. 93, 74–80 (1959)

    MATH  Google Scholar 

  8. Cignoli R., D’Ottaviano I.M.L., Mundici D.: Algebraic Foundations of Many-alued Reasoning, Volume 7 of Trends in Logic—Studia Logica Library. Kluwer, Dordrecht (2000)

    Google Scholar 

  9. Cignoli R., Torrens A.: An algebraic analysis of product logic. Multiple-valued Log. 5, 45–65 (2000)

    MATH  MathSciNet  Google Scholar 

  10. Esteva F., Godo L.: Monoidal T-norm based Logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124, 271–288 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fodor J., Yager R., Rybalov A.: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowledge-Based Syst. 5, 411–427 (1997)

    Article  MathSciNet  Google Scholar 

  12. Gabbay D., Metcalfe G.: Fuzzy logics based on [0,1)-continuous uninorms. Arch. Math. Log. 46(5), 425–449 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gabbay D.M., Maksimova L.: Interpolation and Definability, Modal and Intuitionistic Logics, Volume 46 of Oxford Logic Guides. The Clarendon Press Oxford University Press, Oxford (2005)

    Google Scholar 

  14. Galatos N., Jipsen P., Kowalski T., Ono H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Volume 151 of Studies in Logic and the Foundations of Mathematics. Elsevier, Amsterdam (2007)

    Google Scholar 

  15. Galatos N., Ono H.: Algebraization, parametrized local deduction theorem and interpolation for substructural logics over FL. Studia Logica 83(1-3), 279–308 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gerla, B.: Many-valued Logics of Continuous T-norms and Their Functional Representation. Ph.D. thesis, University of Milan (2001)

  17. Gispert J.: Axiomatic extensions of the nilpotent minimum logic. Rep. Math. Log. 37, 113–123 (2003)

    MATH  Google Scholar 

  18. Gödel, K.: Zur intuitionistischen Aussagenkalkül. 1932. English traslation, with an introduction note by Troelstra, A.S., In: Feferman, S. (ed.) Kurt Gödel, Collected Works, vol. 1, pp. (222-225). Oxford University Press, Oxford (1986)

  19. Hájek P.: Metamathematics of Fuzzy Logic, Volume 4 of Trends in Logic—Studia Logica Library. Kluwer, Dordrecht (1998)

    Google Scholar 

  20. Hájek P., Godo L., Esteva F.: A complete many-valued logic with product-conjunction. Arch. Math. Log. 35, 191–208 (1996)

    MATH  Google Scholar 

  21. Hodges W.: Model Theory, Volume 42 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  22. Kihara H., Ono H.: Interpolation properties, Beth definability properties and amalgamation properties for substructural logics. J. Log. Comput. 20(4), 823–875 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lacava F., Saeli D.: Sul model-completamento della teoria della Ł-catene. Bollettino U.M.I. (5) 14-A, 107–110 (1977)

    MathSciNet  Google Scholar 

  24. Lane S.M.: Categories for the Working Mathematician. Number 5 in Graduate Texts in Mathematics. Springer, New York (1971)

    Google Scholar 

  25. Maksimova L.L.: Craig’s theorem in superintuitionistic logics and amalgamable varieties of pseudo-Boolean algebras. Algebra i Logika 16, 643–681 (1977)

    MATH  MathSciNet  Google Scholar 

  26. Marker, D.: Model theory. An Introduction, Volume 217 of Graduate Texts in Mathematics. Springer, New York (2002) An introduction

  27. Metcalfe G., Montagna F.: Substructural fuzzy logics. J. Symb. Log. 72(3), 834–864 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Metcalfe, G., Montagna, F., Tsinakis, C.: Unpublished

  29. Montagna F.: Interpolation and Beth’s property in propositional many-valued logics: a semantic investigation. Ann. Pure Appl. Log. 141(1–2), 148–179 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Mundici D.: Interpretation of AF \({C^ \cdot}\) -algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65(1), 15–63 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mundici D.: Free products in the category of Abelian ℓ-groups with strong unit. J. Algebra 113(1), 89–109 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pierce R.S.: Amalgamations of lattice ordered groups. Trans. Am. Math. Soc. 172, 249–260 (1972)

    Article  MathSciNet  Google Scholar 

  33. Trillas E.: Sobre funciones de negación en teoría de conjuntos difusos. Stochastica 3(1), 47–59 (1979)

    MATH  MathSciNet  Google Scholar 

  34. Yager R., Rybalov A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80, 111–120 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Marchioni.

Additional information

The author would like to thank Vincenzo Marra for some very helpful discussions on the content of this paper. Moreover, Marchioni acknowledges partial support from the Spanish projects TASSAT (TIN2010-20967-C04-01), Agreement Technologies (CONSOLIDER CSD2007-0022, INGENIO 2010), the Generalitat de Catalunya grant 2009-SGR-1434, and Juan de la Cierva Program of the Spanish MICINN, as well as the ESF Eurocores-LogICCC/MICINN project (FFI2008-03126-E/FILO), and the Marie Curie IRSES Project (FP7-PEOPLE-2009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchioni, E. Amalgamation through quantifier elimination for varieties of commutative residuated lattices. Arch. Math. Logic 51, 15–34 (2012). https://doi.org/10.1007/s00153-011-0251-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-011-0251-x

Keywords

Mathematics Subject Classification (2000)

Navigation